ivan@155
|
1 %% Dictionary Learning for Image Denoising - KSVD vs Recursive Least Squares
|
ivan@155
|
2 %
|
ivan@155
|
3 % This file contains an example of how SMALLbox can be used to test different
|
ivan@155
|
4 % dictionary learning techniques in Image Denoising problem.
|
ivan@155
|
5 % It calls generateImageDenoiseProblem that will let you to choose image,
|
ivan@155
|
6 % add noise and use noisy image to generate training set for dictionary
|
ivan@155
|
7 % learning.
|
ivan@155
|
8 % Two dictionary learning techniques were compared:
|
ivan@155
|
9 %
|
ivan@155
|
10 % - KSVD - M. Elad, R. Rubinstein, and M. Zibulevsky, "Efficient
|
ivan@155
|
11 % Implementation of the K-SVD Algorithm using Batch Orthogonal
|
ivan@155
|
12 % Matching Pursuit", Technical Report - CS, Technion, April 2008.
|
ivan@155
|
13 %
|
ivan@155
|
14 % - MMDL - M. Yaghoobi, T. Blumensath and M. Davies, "Dictionary Learning
|
ivan@155
|
15 % for Sparse Approximations with the Majorization Method", IEEE
|
ivan@155
|
16 % Trans. on Signal Processing, Vol. 57, No. 6, pp 2178-2191, 2009.
|
ivan@155
|
17
|
ivan@155
|
18
|
ivan@155
|
19 % Centre for Digital Music, Queen Mary, University of London.
|
ivan@155
|
20 % This file copyright 2011 Ivan Damnjanovic.
|
ivan@155
|
21 %
|
ivan@155
|
22 % This program is free software; you can redistribute it and/or
|
ivan@155
|
23 % modify it under the terms of the GNU General Public License as
|
ivan@155
|
24 % published by the Free Software Foundation; either version 2 of the
|
ivan@155
|
25 % License, or (at your option) any later version. See the file
|
ivan@155
|
26 % COPYING included with this distribution for more information.
|
ivan@155
|
27 %
|
ivan@155
|
28 %%
|
ivan@155
|
29
|
ivan@155
|
30
|
ivan@155
|
31
|
ivan@155
|
32 % If you want to load the image outside of generateImageDenoiseProblem
|
ivan@155
|
33 % function uncomment following lines. This can be useful if you want to
|
ivan@155
|
34 % denoise more then one image for example.
|
ivan@155
|
35 % Here we are loading test_image.mat that contains structure with 5 images : lena,
|
ivan@155
|
36 % barbara,boat, house and peppers.
|
ivan@155
|
37 clear;
|
ivan@155
|
38 TMPpath=pwd;
|
ivan@155
|
39 FS=filesep;
|
ivan@155
|
40 [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m'));
|
ivan@155
|
41 cd([pathstr1,FS,'data',FS,'images']);
|
ivan@155
|
42 load('test_image.mat');
|
ivan@155
|
43 cd(TMPpath);
|
ivan@155
|
44
|
ivan@155
|
45 % Deffining the noise levels that we want to test
|
ivan@155
|
46
|
ivan@155
|
47 noise_level=[10 20 25 50 100];
|
ivan@155
|
48
|
ivan@155
|
49 % Here we loop through different noise levels and images
|
ivan@155
|
50
|
ivan@155
|
51 for noise_ind=2:2
|
ivan@155
|
52 for im_num=1:1
|
ivan@155
|
53
|
ivan@155
|
54 % Defining Image Denoising Problem as Dictionary Learning
|
ivan@155
|
55 % Problem. As an input we set the number of training patches.
|
ivan@155
|
56
|
ivan@155
|
57 SMALL.Problem = generateImageDenoiseProblem(test_image(im_num).i, 40000, '',256, noise_level(noise_ind));
|
ivan@155
|
58 SMALL.Problem.name=int2str(im_num);
|
ivan@155
|
59
|
ivan@155
|
60 Edata=sqrt(prod(SMALL.Problem.blocksize)) * SMALL.Problem.sigma * SMALL.Problem.gain;
|
ivan@155
|
61 maxatoms = floor(prod(SMALL.Problem.blocksize)/2);
|
ivan@155
|
62
|
ivan@155
|
63 % results structure is to store all results
|
ivan@155
|
64
|
ivan@155
|
65 results(noise_ind,im_num).noisy_psnr=SMALL.Problem.noisy_psnr;
|
ivan@155
|
66
|
ivan@155
|
67 %%
|
ivan@155
|
68 % Use KSVD Dictionary Learning Algorithm to Learn overcomplete dictionary
|
ivan@155
|
69
|
ivan@155
|
70 % Initialising Dictionary structure
|
ivan@155
|
71 % Setting Dictionary structure fields (toolbox, name, param, D and time)
|
ivan@155
|
72 % to zero values
|
ivan@155
|
73
|
ivan@155
|
74 SMALL.DL(1)=SMALL_init_DL();
|
ivan@155
|
75
|
ivan@155
|
76 % Defining the parameters needed for dictionary learning
|
ivan@155
|
77
|
ivan@155
|
78 SMALL.DL(1).toolbox = 'KSVD';
|
ivan@155
|
79 SMALL.DL(1).name = 'ksvd';
|
ivan@155
|
80
|
ivan@155
|
81 % Defining the parameters for KSVD
|
ivan@155
|
82 % In this example we are learning 256 atoms in 20 iterations, so that
|
ivan@155
|
83 % every patch in the training set can be represented with target error in
|
ivan@155
|
84 % L2-norm (Edata)
|
ivan@155
|
85 % Type help ksvd in MATLAB prompt for more options.
|
ivan@155
|
86
|
ivan@155
|
87
|
ivan@155
|
88 SMALL.DL(1).param=struct(...
|
ivan@155
|
89 'Edata', Edata,...
|
ivan@155
|
90 'initdict', SMALL.Problem.initdict,...
|
ivan@155
|
91 'dictsize', SMALL.Problem.p,...
|
ivan@155
|
92 'exact', 1, ...
|
ivan@155
|
93 'iternum', 20,...
|
ivan@155
|
94 'memusage', 'high');
|
ivan@155
|
95
|
ivan@155
|
96 % Learn the dictionary
|
ivan@155
|
97
|
ivan@155
|
98 SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1));
|
ivan@155
|
99
|
ivan@155
|
100 % Set SMALL.Problem.A dictionary
|
ivan@155
|
101 % (backward compatiblity with SPARCO: solver structure communicate
|
ivan@155
|
102 % only with Problem structure, ie no direct communication between DL and
|
ivan@155
|
103 % solver structures)
|
ivan@155
|
104
|
ivan@155
|
105 SMALL.Problem.A = SMALL.DL(1).D;
|
ivan@161
|
106 SMALL.Problem.reconstruct = @(x) ImageDenoise_reconstruct(x, SMALL.Problem);
|
ivan@155
|
107
|
ivan@155
|
108 %%
|
ivan@155
|
109 % Initialising solver structure
|
ivan@155
|
110 % Setting solver structure fields (toolbox, name, param, solution,
|
ivan@155
|
111 % reconstructed and time) to zero values
|
ivan@155
|
112
|
ivan@155
|
113 SMALL.solver(1)=SMALL_init_solver;
|
ivan@155
|
114
|
ivan@155
|
115 % Defining the parameters needed for image denoising
|
ivan@155
|
116
|
ivan@155
|
117 SMALL.solver(1).toolbox='ompbox';
|
ivan@155
|
118 SMALL.solver(1).name='omp2';
|
ivan@155
|
119 SMALL.solver(1).param=struct(...
|
ivan@155
|
120 'epsilon',Edata,...
|
ivan@155
|
121 'maxatoms', maxatoms);
|
ivan@155
|
122
|
ivan@155
|
123 % Denoising the image - find the sparse solution in the learned
|
ivan@155
|
124 % dictionary for all patches in the image and the end it uses
|
ivan@155
|
125 % reconstruction function to reconstruct the patches and put them into a
|
ivan@155
|
126 % denoised image
|
ivan@155
|
127
|
ivan@155
|
128 SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1));
|
ivan@155
|
129
|
ivan@155
|
130 % Show PSNR after reconstruction
|
ivan@155
|
131
|
ivan@155
|
132 SMALL.solver(1).reconstructed.psnr
|
ivan@155
|
133
|
ivan@155
|
134 %%
|
ivan@155
|
135 % For comparison purposes we will denoise image with Majorization
|
ivan@155
|
136 % Minimization method
|
ivan@155
|
137 %
|
ivan@155
|
138
|
ivan@155
|
139 % Initialising solver structure
|
ivan@155
|
140 % Setting solver structure fields (toolbox, name, param, solution,
|
ivan@155
|
141 % reconstructed and time) to zero values
|
ivan@155
|
142
|
ivan@155
|
143 SMALL.solver(2)=SMALL_init_solver;
|
ivan@155
|
144
|
ivan@155
|
145 % Defining the parameters needed for image denoising
|
ivan@155
|
146
|
ivan@155
|
147 SMALL.solver(2).toolbox='ompbox';
|
ivan@155
|
148 SMALL.solver(2).name='omp2';
|
ivan@155
|
149 SMALL.solver(2).param=struct(...
|
ivan@155
|
150 'epsilon',Edata,...
|
ivan@155
|
151 'maxatoms', maxatoms);
|
ivan@155
|
152
|
ivan@155
|
153 % Initialising Dictionary structure
|
ivan@155
|
154 % Setting Dictionary structure fields (toolbox, name, param, D and time)
|
ivan@155
|
155 % to zero values
|
ivan@155
|
156
|
ivan@155
|
157 SMALL.DL(2)=SMALL_init_DL('MMbox', 'MM_cn', '', 1);
|
ivan@155
|
158
|
ivan@155
|
159
|
ivan@155
|
160 % Defining the parameters for MOD
|
ivan@155
|
161 % In this example we are learning 256 atoms in 20 iterations, so that
|
ivan@155
|
162 % every patch in the training set can be represented with target error in
|
ivan@155
|
163 % L2-norm (EData)
|
ivan@155
|
164 % Type help ksvd in MATLAB prompt for more options.
|
ivan@155
|
165
|
ivan@155
|
166
|
ivan@155
|
167 SMALL.DL(2).param=struct(...
|
ivan@155
|
168 'solver', SMALL.solver(2),...
|
ivan@155
|
169 'initdict', SMALL.Problem.initdict,...
|
ivan@155
|
170 'dictsize', SMALL.Problem.p,...
|
ivan@155
|
171 'iternum', 20,...
|
ivan@155
|
172 'iterDictUpdate', 1000,...
|
ivan@155
|
173 'epsDictUpdate', 1e-7,...
|
ivan@155
|
174 'cvset',0,...
|
ivan@155
|
175 'show_dict', 0);
|
ivan@155
|
176
|
ivan@155
|
177 % Learn the dictionary
|
ivan@155
|
178
|
ivan@155
|
179 SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2));
|
ivan@155
|
180
|
ivan@155
|
181 % Set SMALL.Problem.A dictionary
|
ivan@155
|
182 % (backward compatiblity with SPARCO: solver structure communicate
|
ivan@155
|
183 % only with Problem structure, ie no direct communication between DL and
|
ivan@155
|
184 % solver structures)
|
ivan@155
|
185
|
ivan@155
|
186 SMALL.Problem.A = SMALL.DL(2).D;
|
ivan@161
|
187 SMALL.Problem.reconstruct = @(x) ImageDenoise_reconstruct(x, SMALL.Problem);
|
ivan@155
|
188
|
ivan@155
|
189 % Denoising the image - find the sparse solution in the learned
|
ivan@155
|
190 % dictionary for all patches in the image and the end it uses
|
ivan@155
|
191 % reconstruction function to reconstruct the patches and put them into a
|
ivan@155
|
192 % denoised image
|
ivan@155
|
193
|
ivan@155
|
194 SMALL.solver(2)=SMALL_solve(SMALL.Problem, SMALL.solver(2));
|
ivan@155
|
195
|
ivan@155
|
196
|
ivan@155
|
197
|
ivan@155
|
198 % show results %
|
ivan@155
|
199
|
ivan@155
|
200 SMALL_ImgDeNoiseResult(SMALL);
|
ivan@155
|
201
|
ivan@155
|
202 results(noise_ind,im_num).psnr.ksvd=SMALL.solver(1).reconstructed.psnr;
|
ivan@155
|
203 results(noise_ind,im_num).psnr.odct=SMALL.solver(2).reconstructed.psnr;
|
ivan@155
|
204 results(noise_ind,im_num).vmrse.ksvd=SMALL.solver(1).reconstructed.vmrse;
|
ivan@155
|
205 results(noise_ind,im_num).vmrse.odct=SMALL.solver(2).reconstructed.vmrse;
|
ivan@155
|
206 results(noise_ind,im_num).ssim.ksvd=SMALL.solver(1).reconstructed.ssim;
|
ivan@155
|
207 results(noise_ind,im_num).ssim.odct=SMALL.solver(2).reconstructed.ssim;
|
ivan@155
|
208
|
ivan@155
|
209
|
ivan@155
|
210 results(noise_ind,im_num).time.ksvd=SMALL.solver(1).time+SMALL.DL(1).time;
|
ivan@155
|
211
|
ivan@155
|
212 %clear SMALL;
|
ivan@155
|
213 end
|
ivan@155
|
214 end
|
ivan@155
|
215 % save results.mat results
|