Mercurial > hg > smallbox
comparison toolboxes/alps/ALPS/one_ALPS.m @ 154:0de08f68256b ivand_dev
ALPS toolbox - Algebraic Pursuit added to smallbox
author | Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Fri, 12 Aug 2011 11:17:47 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
153:af307f247ac7 | 154:0de08f68256b |
---|---|
1 function [x_hat, numiter, x_path] = one_ALPS(y, Phi, K, params) | |
2 % ========================================================================= | |
3 % 1-ALPS(#) algorithm - Beta Version | |
4 % ========================================================================= | |
5 % Algebraic Pursuit (ALPS) algorithm with 1-memory acceleration. | |
6 % | |
7 % Detailed discussion on the algorithm can be found in | |
8 % [1] "On Accelerated Hard Thresholding Methods for Sparse Approximation", written | |
9 % by Volkan Cevher, Technical Report, 2011. | |
10 % ========================================================================= | |
11 % INPUT ARGUMENTS: | |
12 % y M x 1 undersampled measurement vector. | |
13 % Phi M x N regression matrix. | |
14 % K Sparsity of underlying vector x* or desired | |
15 % sparsity of solution. | |
16 % params Structure of parameters. These are: | |
17 % | |
18 % tol,... Early stopping tolerance. Default value: tol = | |
19 % 1-e5. | |
20 % ALPSiters,... Maximum number of algorithm iterations. Default | |
21 % value: 300. | |
22 % solveNewtonb,... If solveNewtonb == 1: Corresponds to solving a | |
23 % Newton system restricted to a sparse support. | |
24 % It is implemented via conjugate gradients. | |
25 % If solveNewtonb == 0: Step size selection as described | |
26 % in eqs. (12) and (13) in [1]. | |
27 % Default value: solveNewtonb = 0. | |
28 % gradientDescentx,... If gradientDescentx == 1: single gradient | |
29 % update of x_{i+1} restricted ot its support with | |
30 % line search. Default value: gradientDescentx = | |
31 % 1. | |
32 % solveNewtonx,... If solveNewtonx == 1: Akin to Hard Thresholding Pursuit | |
33 % (c.f. Simon Foucart, "Hard Thresholding Pursuit," | |
34 % preprint, 2010). Default vale: solveNewtonx = 0. | |
35 % tau,... Variable that controls the momentum in | |
36 % non-memoryless case. Ignored in memoryless | |
37 % case. Default value: tau = 1/2. | |
38 % Special cases: | |
39 % - tau = 0: momentum step size selection is | |
40 % driven by the following formulas: | |
41 % a_1 = 1; | |
42 % a_{i+1} = (1+\sqrt(1+4a_i^2)/2; | |
43 % tau = (a_i - 1)/(a_{i+1}); | |
44 % described in [2] "A fast iterative | |
45 % shrinkage-thresholding algorithm for linear | |
46 % inverse problems", Beck A., and Teboulle M. | |
47 % - tau = -1: momentum step size is automatically | |
48 % optimized in every step. | |
49 % - tau as a function handle: user defined | |
50 % behavior of tau momentum term. | |
51 % mu,... Variable that controls the step size selection. | |
52 % When mu = 0, step size is computed adaptively | |
53 % per iteration. Default value: mu = 0. | |
54 % cg_maxiter,... Maximum iterations for Conjugate-Gradients method. | |
55 % cg_tol Tolerance variable for Conjugate-Gradients method. | |
56 % ========================================================================= | |
57 % OUTPUT ARGUMENTS: | |
58 % x_hat N x 1 recovered K-sparse vector. | |
59 % numiter Number of iterations executed. | |
60 % x_path Keeps a series of computed N x 1 K-sparse vectors | |
61 % until the end of the iterative process. | |
62 % ========================================================================= | |
63 % 01/04/2011, by Anastasios Kyrillidis. anastasios.kyrillidis@epfl.ch, EPFL. | |
64 % ========================================================================= | |
65 % cgsolve.m is written by Justin Romberg, Caltech, Oct. 2005. | |
66 % Email: jrom@acm.caltech.edu | |
67 % ========================================================================= | |
68 % This work was supported in part by the European Commission under Grant | |
69 % MIRG-268398 and DARPA KeCoM program #11-DARPA-1055. VC also would like | |
70 % to acknowledge Rice University for his Faculty Fellowship. | |
71 % ========================================================================= | |
72 | |
73 [M,N] = size(Phi); | |
74 | |
75 %% Initialize transpose of measurement matrix | |
76 | |
77 Phi_t = Phi'; | |
78 | |
79 %% Initialize to zero vector | |
80 x_cur = zeros(N,1); | |
81 y_cur = zeros(N,1); | |
82 Phi_x_cur = zeros(M,1); | |
83 Y_i = []; | |
84 | |
85 x_path = zeros(N, params.ALPSiters); | |
86 | |
87 %% CG params | |
88 if (params.solveNewtonx == 1 || params.solveNewtonb == 1) | |
89 cg_verbose = 0; | |
90 cg_A = Phi_t*Phi; | |
91 cg_b = Phi_t*y; | |
92 end; | |
93 | |
94 %% Determine momentum step size selection strategy | |
95 fista = 0; | |
96 optimizeTau = 0; | |
97 a_prev = 1; | |
98 function_tau = 0; | |
99 | |
100 if (isa(params.tau,'float')) | |
101 function_tau = 0; | |
102 if (params.tau == 0) | |
103 fista = 1; | |
104 optimizeTau = 0; | |
105 elseif (params.tau == -1) | |
106 optimizeTau = 1; | |
107 fista = 0; | |
108 end; | |
109 elseif (isa(params.tau, 'function_handle')) | |
110 function_tau = 1; | |
111 end; | |
112 | |
113 %% Determine step size selection strategy | |
114 function_mu = 0; | |
115 adaptive_mu = 0; | |
116 | |
117 if (isa(params.mu,'float')) | |
118 function_mu = 0; | |
119 if (params.mu == 0) | |
120 adaptive_mu = 1; | |
121 else | |
122 adaptive_mu = 0; | |
123 end; | |
124 elseif (isa(params.mu,'function_handle')) | |
125 function_mu = 1; | |
126 end; | |
127 | |
128 %% Help variables | |
129 complementary_Yi = ones(N,1); | |
130 | |
131 i = 1; | |
132 %% 1-ALPS(#) | |
133 while (i <= params.ALPSiters) | |
134 x_path(:,i) = x_cur; | |
135 x_prev = x_cur; | |
136 | |
137 % Compute the residual | |
138 if (i == 1) | |
139 res = y; | |
140 % Compute the derivative | |
141 der = Phi_t*res; | |
142 else | |
143 % Compute the derivative | |
144 if (optimizeTau) | |
145 res = y - Phi_x_cur - params.tau*Phi_diff; | |
146 else | |
147 res = y - Phi(:,Y_i)*y_cur(Y_i); | |
148 end; | |
149 der = Phi_t*res; | |
150 end; | |
151 | |
152 Phi_x_prev = Phi_x_cur; | |
153 | |
154 % Determine S_i set via eq. (11) (change of variable from x_i to y_i) | |
155 complementary_Yi(Y_i) = 0; | |
156 [tmpArg, ind_der] = sort(abs(der).*complementary_Yi, 'descend'); | |
157 complementary_Yi(Y_i) = 1; | |
158 S_i = [Y_i; ind_der(1:K)]; | |
159 | |
160 ider = der(S_i); | |
161 if (params.solveNewtonb == 1) | |
162 % Compute least squares solution of the system A*y = (A*A)x using CG | |
163 if (params.useCG == 1) | |
164 [b, tmpArg, tmpArg] = cgsolve(cg_A(S_i, S_i), cg_b(S_i), params.cg_tol, params.cg_maxiter, cg_verbose); | |
165 else | |
166 b = cg_A(S_i,S_i)\cg_b(S_i); | |
167 end; | |
168 else | |
169 % Step size selection via eq. (12) and eq. (13) (change of variable from x_i to y_i) | |
170 if (adaptive_mu) | |
171 Pder = Phi(:,S_i)*ider; | |
172 mu_bar = ider'*ider/(Pder'*Pder); | |
173 b = y_cur(S_i) + (mu_bar)*ider; | |
174 elseif (function_mu) | |
175 b = y_cur(S_i) + params.mu(i)*ider; | |
176 else b = y_cur(S_i) + params.mu*ider; | |
177 end; | |
178 end; | |
179 | |
180 % Hard-threshold b and compute X_{i+1} | |
181 [tmpArg, ind_b] = sort(abs(b), 'descend'); | |
182 x_cur = zeros(N,1); | |
183 x_cur(S_i(ind_b(1:K))) = b(ind_b(1:K)); | |
184 X_i = S_i(ind_b(1:K)); | |
185 | |
186 if (params.gradientDescentx == 1) | |
187 % Calculate gradient of estimated vector x_cur | |
188 Phi_x_cur = Phi(:,X_i)*x_cur(X_i); | |
189 res = y - Phi_x_cur; | |
190 der = Phi_t*res; | |
191 ider = der(X_i); | |
192 | |
193 if (adaptive_mu) | |
194 Pder = Phi(:,X_i)*ider; | |
195 mu_bar = ider'*ider/(Pder'*Pder); | |
196 x_cur(X_i) = x_cur(X_i) + mu_bar*ider; | |
197 elseif (function_mu) | |
198 x_cur(X_i) = x_cur(X_i) + params.mu(i)*ider; | |
199 else x_cur(X_i) = x_cur(X_i) + params.mu*ider; | |
200 end; | |
201 elseif (params.solveNewtonx == 1) | |
202 % Similar to HTP | |
203 if (params.useCG == 1) | |
204 [v, tmpArg, tmpArg] = cgsolve(cg_A(X_i, X_i), cg_b(X_i), params.cg_tol, params.cg_maxiter, cg_verbose); | |
205 else | |
206 v = cg_A(X_i, X_i)\cg_b(X_i); | |
207 end; | |
208 x_cur(X_i) = v; | |
209 end; | |
210 | |
211 if (~function_tau) % If tau is not a function handle... | |
212 if (fista) % Fista configuration | |
213 a_cur = (1 + sqrt(1 + 4*a_prev^2))/2; | |
214 params.tau = (a_prev - 1)/a_cur; | |
215 a_prev = a_cur; | |
216 elseif (optimizeTau) % Compute optimized tau | |
217 | |
218 % tau = argmin ||u - Phi*y_{i+1}|| | |
219 % = <res, Phi*(x_cur - x_prev)>/||Phi*(x_cur - x_prev)||^2 | |
220 | |
221 Phi_x_cur = Phi(:,X_i)*x_cur(X_i); | |
222 res = y - Phi_x_cur; | |
223 if (i == 1) | |
224 Phi_diff = Phi_x_cur; | |
225 else | |
226 Phi_diff = Phi_x_cur - Phi_x_prev; | |
227 end; | |
228 params.tau = res'*Phi_diff/(Phi_diff'*Phi_diff); | |
229 end; | |
230 | |
231 y_cur = x_cur + params.tau*(x_cur - x_prev); | |
232 Y_i = find(ne(y_cur, 0)); | |
233 else | |
234 y_cur = x_cur + params.tau(i)*(x_cur - x_prev); | |
235 Y_i = find(ne(y_cur, 0)); | |
236 end; | |
237 | |
238 % Test stopping criterion | |
239 if (i > 1) && (norm(x_cur - x_prev) < params.tol*norm(x_cur)) | |
240 break; | |
241 end; | |
242 i = i + 1; | |
243 end; | |
244 | |
245 x_hat = x_cur; | |
246 numiter= i; | |
247 | |
248 if (i > params.ALPSiters) | |
249 x_path = x_path(:,1:numiter-1); | |
250 else | |
251 x_path = x_path(:,1:numiter); | |
252 end; |