diff toolboxes/alps/ALPS/one_ALPS.m @ 154:0de08f68256b ivand_dev

ALPS toolbox - Algebraic Pursuit added to smallbox
author Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk>
date Fri, 12 Aug 2011 11:17:47 +0100
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/toolboxes/alps/ALPS/one_ALPS.m	Fri Aug 12 11:17:47 2011 +0100
@@ -0,0 +1,252 @@
+function [x_hat, numiter, x_path] = one_ALPS(y, Phi, K, params)
+% =========================================================================
+%                  1-ALPS(#) algorithm - Beta Version
+% =========================================================================
+% Algebraic Pursuit (ALPS) algorithm with 1-memory acceleration. 
+% 
+% Detailed discussion on the algorithm can be found in 
+% [1] "On Accelerated Hard Thresholding Methods for Sparse Approximation", written
+% by Volkan Cevher, Technical Report, 2011.
+% =========================================================================
+% INPUT ARGUMENTS:
+% y                         M x 1 undersampled measurement vector.
+% Phi                       M x N regression matrix.
+% K                         Sparsity of underlying vector x* or desired
+%                           sparsity of solution.
+% params                    Structure of parameters. These are:
+%
+%    tol,...                Early stopping tolerance. Default value: tol =
+%                           1-e5.
+%    ALPSiters,...          Maximum number of algorithm iterations. Default
+%                           value: 300. 
+%    solveNewtonb,...       If solveNewtonb == 1: Corresponds to solving a 
+%                           Newton system restricted to a sparse support. 
+%                           It is implemented via conjugate gradients.  
+%                           If solveNewtonb == 0: Step size selection as described
+%                           in eqs. (12) and (13) in [1]. 
+%                           Default value: solveNewtonb = 0.
+%    gradientDescentx,...   If gradientDescentx == 1: single gradient
+%                           update of x_{i+1} restricted ot its support with 
+%                           line search. Default value: gradientDescentx =
+%                           1.
+%    solveNewtonx,...       If solveNewtonx == 1: Akin to Hard Thresholding Pursuit
+%                           (c.f. Simon Foucart, "Hard Thresholding Pursuit," 
+%                           preprint, 2010). Default vale: solveNewtonx = 0.
+%    tau,...                Variable that controls the momentum in
+%                           non-memoryless case. Ignored in memoryless
+%                           case. Default value: tau = 1/2.
+%                           Special cases:
+%                               - tau = 0: momentum step size selection is
+%                               driven by the following formulas:
+%                                   a_1 = 1;
+%                                   a_{i+1} = (1+\sqrt(1+4a_i^2)/2;
+%                                   tau = (a_i - 1)/(a_{i+1});
+%                               described in [2] "A fast iterative
+%                               shrinkage-thresholding algorithm for linear
+%                               inverse problems", Beck A., and Teboulle M.
+%                               - tau = -1: momentum step size is automatically
+%                               optimized in every step.
+%                               - tau as a function handle: user defined
+%                               behavior of tau momentum term.
+%    mu,...                 Variable that controls the step size selection. 
+%                           When mu = 0, step size is computed adaptively 
+%                           per iteration. Default value: mu = 0. 
+%    cg_maxiter,...         Maximum iterations for Conjugate-Gradients method.
+%    cg_tol                 Tolerance variable for Conjugate-Gradients method.  
+% =========================================================================
+% OUTPUT ARGUMENTS:
+% x_hat                     N x 1 recovered K-sparse vector.
+% numiter                   Number of iterations executed.
+% x_path                    Keeps a series of computed N x 1 K-sparse vectors 
+%                           until the end of the iterative process.
+% =========================================================================
+% 01/04/2011, by Anastasios Kyrillidis. anastasios.kyrillidis@epfl.ch, EPFL.
+% =========================================================================
+% cgsolve.m is written by Justin Romberg, Caltech, Oct. 2005.
+%                         Email: jrom@acm.caltech.edu
+% =========================================================================
+% This work was supported in part by the European Commission under Grant 
+% MIRG-268398 and DARPA KeCoM program #11-DARPA-1055. VC also would like 
+% to acknowledge Rice University for his Faculty Fellowship.
+% =========================================================================
+
+[M,N] = size(Phi);
+
+%% Initialize transpose of measurement matrix
+
+Phi_t = Phi';
+
+%% Initialize to zero vector
+x_cur = zeros(N,1);
+y_cur = zeros(N,1);
+Phi_x_cur = zeros(M,1);
+Y_i = [];
+
+x_path = zeros(N, params.ALPSiters);
+
+%% CG params
+if (params.solveNewtonx == 1 || params.solveNewtonb == 1)
+    cg_verbose = 0;
+    cg_A = Phi_t*Phi;
+    cg_b = Phi_t*y;
+end;
+
+%% Determine momentum step size selection strategy
+fista = 0;
+optimizeTau = 0;
+a_prev = 1;
+function_tau = 0;
+
+if (isa(params.tau,'float'))
+    function_tau = 0;
+    if (params.tau == 0)
+        fista = 1;
+        optimizeTau = 0;
+    elseif (params.tau == -1)
+        optimizeTau = 1;
+        fista = 0;
+    end;
+elseif (isa(params.tau, 'function_handle'))
+    function_tau = 1;
+end;
+
+%% Determine step size selection strategy
+function_mu = 0;
+adaptive_mu = 0;
+
+if (isa(params.mu,'float'))
+    function_mu = 0;
+    if (params.mu == 0)
+        adaptive_mu = 1;
+    else
+        adaptive_mu = 0;
+    end;
+elseif (isa(params.mu,'function_handle'))
+    function_mu = 1;
+end;
+
+%% Help variables
+complementary_Yi = ones(N,1);
+
+i = 1;
+%% 1-ALPS(#)
+while (i <= params.ALPSiters)
+    x_path(:,i) = x_cur;
+    x_prev = x_cur;        
+    
+    % Compute the residual
+    if (i == 1)
+        res = y;
+        % Compute the derivative
+        der = Phi_t*res;
+    else
+        % Compute the derivative
+        if (optimizeTau)
+            res = y - Phi_x_cur - params.tau*Phi_diff;
+        else
+            res = y - Phi(:,Y_i)*y_cur(Y_i);
+        end;
+        der = Phi_t*res;
+    end;
+    
+    Phi_x_prev = Phi_x_cur;               
+    
+    % Determine S_i set via eq. (11) (change of variable from x_i to y_i)
+    complementary_Yi(Y_i) = 0;
+    [tmpArg, ind_der] = sort(abs(der).*complementary_Yi, 'descend');  
+    complementary_Yi(Y_i) = 1;
+    S_i = [Y_i; ind_der(1:K)];
+        
+    ider = der(S_i);
+    if (params.solveNewtonb == 1)     
+        % Compute least squares solution of the system A*y = (A*A)x using CG                        
+        if (params.useCG == 1)
+            [b, tmpArg, tmpArg] = cgsolve(cg_A(S_i, S_i), cg_b(S_i), params.cg_tol, params.cg_maxiter, cg_verbose);
+        else 
+            b = cg_A(S_i,S_i)\cg_b(S_i);
+        end;
+    else
+        % Step size selection via eq. (12) and eq. (13) (change of variable from x_i to y_i)
+        if (adaptive_mu)
+            Pder = Phi(:,S_i)*ider;
+            mu_bar = ider'*ider/(Pder'*Pder);            
+            b = y_cur(S_i) + (mu_bar)*ider;        
+        elseif (function_mu)
+            b = y_cur(S_i) + params.mu(i)*ider;
+        else b = y_cur(S_i) + params.mu*ider;
+        end;
+    end;
+
+    % Hard-threshold b and compute X_{i+1}
+    [tmpArg, ind_b] = sort(abs(b), 'descend');
+    x_cur = zeros(N,1);
+    x_cur(S_i(ind_b(1:K))) = b(ind_b(1:K));
+    X_i = S_i(ind_b(1:K));
+
+    if (params.gradientDescentx == 1)
+        % Calculate gradient of estimated vector x_cur
+        Phi_x_cur = Phi(:,X_i)*x_cur(X_i);
+        res = y - Phi_x_cur;
+        der = Phi_t*res;
+        ider = der(X_i);
+        
+        if (adaptive_mu)
+            Pder = Phi(:,X_i)*ider;
+            mu_bar = ider'*ider/(Pder'*Pder);
+            x_cur(X_i) = x_cur(X_i) + mu_bar*ider;
+        elseif (function_mu)
+            x_cur(X_i) = x_cur(X_i) + params.mu(i)*ider;
+        else x_cur(X_i) = x_cur(X_i) + params.mu*ider;
+        end;
+    elseif (params.solveNewtonx == 1)                
+        % Similar to HTP
+        if (params.useCG == 1)
+            [v, tmpArg, tmpArg] = cgsolve(cg_A(X_i, X_i), cg_b(X_i), params.cg_tol, params.cg_maxiter, cg_verbose);
+        else
+            v = cg_A(X_i, X_i)\cg_b(X_i);
+        end;
+        x_cur(X_i) = v;
+    end;
+    
+    if (~function_tau)    % If tau is not a function handle...
+        if (fista)        % Fista configuration
+            a_cur = (1 + sqrt(1 + 4*a_prev^2))/2;
+            params.tau = (a_prev - 1)/a_cur;
+            a_prev = a_cur;
+        elseif (optimizeTau)   % Compute optimized tau
+
+            % tau = argmin ||u - Phi*y_{i+1}|| 
+            %     = <res, Phi*(x_cur - x_prev)>/||Phi*(x_cur - x_prev)||^2        
+
+            Phi_x_cur = Phi(:,X_i)*x_cur(X_i);
+            res = y - Phi_x_cur;
+            if (i == 1)
+                Phi_diff = Phi_x_cur;
+            else
+                Phi_diff = Phi_x_cur - Phi_x_prev;
+            end;
+            params.tau = res'*Phi_diff/(Phi_diff'*Phi_diff);
+        end;
+
+        y_cur = x_cur + params.tau*(x_cur - x_prev);
+        Y_i = find(ne(y_cur, 0));
+    else
+        y_cur = x_cur + params.tau(i)*(x_cur - x_prev);
+        Y_i = find(ne(y_cur, 0));
+    end;
+        
+    % Test stopping criterion
+    if (i > 1) && (norm(x_cur - x_prev) < params.tol*norm(x_cur))
+        break;
+    end;
+    i = i + 1;
+end;
+
+x_hat = x_cur;
+numiter= i;
+
+if (i > params.ALPSiters)
+    x_path = x_path(:,1:numiter-1);
+else
+    x_path = x_path(:,1:numiter);
+end;