idamnjanovic@6
|
1 %% DICTIONARY LEARNING FOR AUTOMATIC MUSIC TRANSCRIPTION
|
idamnjanovic@6
|
2 % This file contains an example of how SMALLbox can be used to test diferent
|
idamnjanovic@6
|
3 % dictionary learning techniques in Automatic Music Transcription problem.
|
idamnjanovic@6
|
4 % It calls generateAMT_Learning_Problem that will let you to choose midi,
|
idamnjanovic@6
|
5 % wave or mat file to be transcribe. If file is midi it will be first
|
idamnjanovic@6
|
6 % converted to wave and original midi file will be used for comparison with
|
idamnjanovic@6
|
7 % results of dictionary learning and reconstruction.
|
idamnjanovic@6
|
8 % The function will generarte the Problem structure that is used to learn
|
idamnjanovic@6
|
9 % Problem.p notes spectrograms from training set Problem.b using
|
idamnjanovic@6
|
10 % dictionary learning technique defined in DL structure.
|
idamnjanovic@6
|
11 %
|
idamnjanovic@6
|
12 % Ivan Damnjanovic 2010
|
idamnjanovic@6
|
13 %%
|
idamnjanovic@6
|
14
|
idamnjanovic@6
|
15 clear;
|
idamnjanovic@6
|
16
|
idamnjanovic@6
|
17
|
idamnjanovic@6
|
18 % Defining Automatic Transcription of Piano tune as Dictionary Learning
|
idamnjanovic@6
|
19 % Problem
|
idamnjanovic@6
|
20
|
idamnjanovic@6
|
21 SMALL.Problem = generateAMT_Learning_Problem();
|
idamnjanovic@6
|
22 TPmax=0;
|
idamnjanovic@6
|
23 for i=1:5
|
idamnjanovic@6
|
24 %%
|
idamnjanovic@6
|
25 % Use KSVD Dictionary Learning Algorithm to Learn 88 notes (defined in
|
idamnjanovic@6
|
26 % SMALL.Problem.p) using sparsity constrain only
|
idamnjanovic@6
|
27
|
idamnjanovic@6
|
28 % Initialising Dictionary structure
|
idamnjanovic@6
|
29 % Setting Dictionary structure fields (toolbox, name, param, D and time)
|
idamnjanovic@6
|
30 % to zero values
|
idamnjanovic@6
|
31
|
idamnjanovic@6
|
32 SMALL.DL(i)=SMALL_init_DL(i);
|
idamnjanovic@6
|
33
|
idamnjanovic@6
|
34 % Defining the parameters needed for dictionary learning
|
idamnjanovic@6
|
35
|
idamnjanovic@6
|
36 SMALL.DL(i).toolbox = 'KSVD';
|
idamnjanovic@6
|
37 SMALL.DL(i).name = 'ksvd';
|
idamnjanovic@6
|
38
|
idamnjanovic@6
|
39 % Defining the parameters for KSVD
|
idamnjanovic@6
|
40 % In this example we are learning 88 atoms in 100 iterations, so that
|
idamnjanovic@6
|
41 % every frame in the training set can be represented with maximum 10
|
idamnjanovic@6
|
42 % dictionary elements. However, our aim here is to show how individual
|
idamnjanovic@6
|
43 % parameters can be ested in the AMT problem. We test five different
|
idamnjanovic@6
|
44 % values for residual error (Edata) in KSVD algorithm.
|
idamnjanovic@6
|
45 % Type help ksvd in MATLAB prompt for more options.
|
idamnjanovic@6
|
46
|
idamnjanovic@6
|
47 Edata(i)=8+i*2;
|
idamnjanovic@6
|
48 SMALL.DL(i).param=struct(...
|
idamnjanovic@6
|
49 'Edata', Edata(i),...
|
idamnjanovic@6
|
50 'dictsize', SMALL.Problem.p,...
|
idamnjanovic@6
|
51 'iternum', 100,...
|
idamnjanovic@6
|
52 'maxatoms', 10);
|
idamnjanovic@6
|
53
|
idamnjanovic@6
|
54 % Learn the dictionary
|
idamnjanovic@6
|
55
|
idamnjanovic@6
|
56 SMALL.DL(i) = SMALL_learn(SMALL.Problem, SMALL.DL(i));
|
idamnjanovic@6
|
57
|
idamnjanovic@6
|
58 % Set SMALL.Problem.A dictionary and reconstruction function
|
idamnjanovic@6
|
59 % (backward compatiblity with SPARCO: solver structure communicate
|
idamnjanovic@6
|
60 % only with Problem structure, ie no direct communication between DL and
|
idamnjanovic@6
|
61 % solver structures)
|
idamnjanovic@6
|
62
|
idamnjanovic@6
|
63 SMALL.Problem.A = SMALL.DL(i).D;
|
idamnjanovic@6
|
64 SMALL.Problem.reconstruct = @(x) SMALL_midiGenerate(x, SMALL.Problem);
|
idamnjanovic@6
|
65
|
idamnjanovic@6
|
66 %%
|
idamnjanovic@6
|
67 % Initialising solver structure
|
idamnjanovic@6
|
68 % Setting solver structure fields (toolbox, name, param, solution,
|
idamnjanovic@6
|
69 % reconstructed and time) to zero values
|
idamnjanovic@6
|
70 % As an example, SPAMS (Julien Mairal 2009) implementation of LARS
|
idamnjanovic@6
|
71 % algorithm is used for representation of training set in the learned
|
idamnjanovic@6
|
72 % dictionary.
|
idamnjanovic@6
|
73
|
idamnjanovic@6
|
74 SMALL.solver(1)=SMALL_init_solver;
|
idamnjanovic@6
|
75
|
idamnjanovic@6
|
76 % Defining the parameters needed for sparse representation
|
idamnjanovic@6
|
77
|
idamnjanovic@6
|
78 SMALL.solver(1).toolbox='SPAMS';
|
idamnjanovic@6
|
79 SMALL.solver(1).name='mexLasso';
|
idamnjanovic@6
|
80 SMALL.solver(1).param=struct('lambda', 2, 'pos', 1, 'mode', 2);
|
idamnjanovic@6
|
81
|
idamnjanovic@6
|
82 %Represent Training set in the learned dictionary
|
idamnjanovic@6
|
83
|
idamnjanovic@6
|
84 SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1));
|
idamnjanovic@6
|
85
|
idamnjanovic@6
|
86 %%
|
idamnjanovic@6
|
87 % Analysis of the result of automatic music transcription. If groundtruth
|
idamnjanovic@6
|
88 % exists, we can compare transcribed notes and original and get usual
|
idamnjanovic@6
|
89 % True Positives, False Positives and False Negatives measures.
|
idamnjanovic@6
|
90
|
idamnjanovic@6
|
91 AMT_res(i) = AMT_analysis(SMALL.Problem, SMALL.solver(1));
|
idamnjanovic@6
|
92
|
idamnjanovic@6
|
93 if AMT_res(i).TP>TPmax
|
idamnjanovic@6
|
94 TPmax=AMT_res(i).TP;
|
idamnjanovic@6
|
95 BLmidi=SMALL.solver(1).reconstructed.midi;
|
idamnjanovic@6
|
96 max=i;
|
idamnjanovic@6
|
97 end
|
idamnjanovic@6
|
98
|
idamnjanovic@6
|
99 end %end of for loop
|
idamnjanovic@6
|
100
|
idamnjanovic@6
|
101 %%
|
idamnjanovic@6
|
102 % Plot results and save midi files
|
idamnjanovic@6
|
103
|
idamnjanovic@6
|
104 figAMTbest=SMALL_AMT_plot(SMALL, AMT_res(max));
|
idamnjanovic@6
|
105
|
idamnjanovic@6
|
106 resFig=figure('Name', 'Automatic Music Transcription KSVD Error TEST');
|
idamnjanovic@6
|
107
|
idamnjanovic@6
|
108 subplot (3,1,1); plot(Edata(:), [AMT_res(:).TP], 'ro-');
|
idamnjanovic@6
|
109 title('True Positives vs Edata');
|
idamnjanovic@6
|
110
|
idamnjanovic@6
|
111 subplot (3,1,2); plot(Edata(:), [AMT_res(:).FN], 'ro-');
|
idamnjanovic@6
|
112 title('False Negatives vs Edata');
|
idamnjanovic@6
|
113
|
idamnjanovic@6
|
114 subplot (3,1,3); plot(Edata(:), [AMT_res(:).FP], 'ro-');
|
idamnjanovic@6
|
115 title('False Positives vs Edata');
|
idamnjanovic@6
|
116
|
idamnjanovic@6
|
117 FS=filesep;
|
idamnjanovic@6
|
118 [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m'));
|
idamnjanovic@6
|
119 cd([pathstr1,FS,'results']);
|
idamnjanovic@6
|
120 [filename,pathname] = uiputfile({' *.mid;' },'Save midi');
|
idamnjanovic@6
|
121 if filename~=0 writemidi(BLmidi, [pathname,FS,filename]);end
|
idamnjanovic@6
|
122 [filename,pathname] = uiputfile({' *.fig;' },'Save figure TP/FN/FP vs lambda');
|
idamnjanovic@6
|
123 if filename~=0 saveas(resFig, [pathname,FS,filename]);end
|
idamnjanovic@6
|
124
|
idamnjanovic@6
|
125 [filename,pathname] = uiputfile({' *.fig;' },'Save BEST AMT figure');
|
idamnjanovic@6
|
126 if filename~=0 saveas(figAMTbest, [pathname,FS,filename]);end
|
idamnjanovic@6
|
127
|