ivan@128
|
1 %% Dictionary Learning for Image Denoising - KSVD vs SPAMS Training size
|
ivan@128
|
2 %% test
|
idamnjanovic@25
|
3 %
|
ivan@128
|
4 % *WARNING!* You should have SPAMS in your search path in order for this
|
ivan@128
|
5 % script to work.Due to licensing issues SPAMS can not be automatically
|
ivan@128
|
6 % provided in SMALLbox (http://www.di.ens.fr/willow/SPAMS/downloads.html).
|
ivan@128
|
7 %
|
idamnjanovic@6
|
8 % This file contains an example of how SMALLbox can be used to test different
|
idamnjanovic@6
|
9 % dictionary learning techniques in Image Denoising problem.
|
idamnjanovic@6
|
10 % It calls generateImageDenoiseProblem that will let you to choose image,
|
idamnjanovic@6
|
11 % add noise and use noisy image to generate training set for dictionary
|
idamnjanovic@6
|
12 % learning.
|
idamnjanovic@6
|
13 % We tested time and psnr for two dictionary learning techniques. This
|
idamnjanovic@6
|
14 % example does not represnt any extensive testing. The aim of this
|
idamnjanovic@6
|
15 % example is just to show how SMALL structure can be used for testing.
|
idamnjanovic@6
|
16 %
|
idamnjanovic@6
|
17 % Two dictionary learning techniques were compared:
|
idamnjanovic@6
|
18 % - KSVD - M. Elad, R. Rubinstein, and M. Zibulevsky, "Efficient
|
idamnjanovic@6
|
19 % Implementation of the K-SVD Algorithm using Batch Orthogonal
|
idamnjanovic@6
|
20 % Matching Pursuit", Technical Report - CS, Technion, April 2008.
|
idamnjanovic@6
|
21 % - SPAMS - J. Mairal, F. Bach, J. Ponce and G. Sapiro. Online
|
idamnjanovic@6
|
22 % Dictionary Learning for Sparse Coding. International
|
idamnjanovic@6
|
23 % Conference on Machine Learning,Montreal, Canada, 2009
|
ivan@107
|
24
|
idamnjanovic@6
|
25 %
|
ivan@107
|
26 % Centre for Digital Music, Queen Mary, University of London.
|
ivan@107
|
27 % This file copyright 2010 Ivan Damnjanovic.
|
idamnjanovic@6
|
28 %
|
ivan@107
|
29 % This program is free software; you can redistribute it and/or
|
ivan@107
|
30 % modify it under the terms of the GNU General Public License as
|
ivan@107
|
31 % published by the Free Software Foundation; either version 2 of the
|
ivan@107
|
32 % License, or (at your option) any later version. See the file
|
ivan@107
|
33 % COPYING included with this distribution for more information.%%
|
idamnjanovic@6
|
34 %%
|
idamnjanovic@6
|
35
|
idamnjanovic@6
|
36 clear all;
|
idamnjanovic@6
|
37
|
idamnjanovic@6
|
38 %% Load an image
|
idamnjanovic@6
|
39 TMPpath=pwd;
|
idamnjanovic@6
|
40 FS=filesep;
|
luis@186
|
41 [pathstr1, name, ext] = fileparts(which('SMALLboxSetup.m'));
|
idamnjanovic@6
|
42 cd([pathstr1,FS,'data',FS,'images']);
|
idamnjanovic@6
|
43 [filename,pathname] = uigetfile({'*.png;'},'Select a file containin pre-calculated notes');
|
luis@186
|
44 [pathstr, name, ext] = fileparts(filename);
|
idamnjanovic@6
|
45 test_image = imread(filename);
|
idamnjanovic@6
|
46 test_image = double(test_image);
|
idamnjanovic@6
|
47 cd(TMPpath);
|
idamnjanovic@6
|
48
|
idamnjanovic@6
|
49 % number of different values we want to test
|
idamnjanovic@6
|
50 n =5;
|
idamnjanovic@6
|
51 step = floor((size(test_image,1)-8+1)*(size(test_image,2)-8+1)/n);
|
idamnjanovic@6
|
52 Training_size=zeros(1,n);
|
idamnjanovic@6
|
53 time = zeros(2,n);
|
idamnjanovic@6
|
54 psnr = zeros(2,n);
|
idamnjanovic@6
|
55 for i=1:n
|
idamnjanovic@6
|
56
|
idamnjanovic@6
|
57 % Here we want to test time spent and quality of denoising for
|
idamnjanovic@6
|
58 % different sizes of training sample.
|
idamnjanovic@6
|
59 Training_size(i)=i*step;
|
idamnjanovic@6
|
60
|
idamnjanovic@6
|
61 SMALL.Problem = generateImageDenoiseProblem(test_image,Training_size(i));
|
idamnjanovic@6
|
62 SMALL.Problem.name=name;
|
idamnjanovic@6
|
63 %%
|
idamnjanovic@6
|
64 % Use KSVD Dictionary Learning Algorithm to Learn overcomplete dictionary
|
idamnjanovic@6
|
65
|
idamnjanovic@6
|
66 % Initialising Dictionary structure
|
idamnjanovic@6
|
67 % Setting Dictionary structure fields (toolbox, name, param, D and time)
|
idamnjanovic@6
|
68 % to zero values
|
idamnjanovic@6
|
69
|
idamnjanovic@6
|
70 SMALL.DL(1)=SMALL_init_DL();
|
idamnjanovic@6
|
71
|
idamnjanovic@6
|
72 % Defining the parameters needed for dictionary learning
|
idamnjanovic@6
|
73
|
idamnjanovic@6
|
74 SMALL.DL(1).toolbox = 'KSVD';
|
idamnjanovic@6
|
75 SMALL.DL(1).name = 'ksvd';
|
idamnjanovic@6
|
76
|
idamnjanovic@6
|
77 % Defining the parameters for KSVD
|
idamnjanovic@6
|
78 % In this example we are learning 256 atoms in 20 iterations, so that
|
idamnjanovic@6
|
79 % every patch in the training set can be represented with target error in
|
idamnjanovic@6
|
80 % L2-norm (EData)
|
idamnjanovic@6
|
81 % Type help ksvd in MATLAB prompt for more options.
|
idamnjanovic@6
|
82
|
idamnjanovic@6
|
83 Edata=sqrt(prod(SMALL.Problem.blocksize)) * SMALL.Problem.sigma * SMALL.Problem.gain;
|
ivan@107
|
84 maxatoms = floor(prod(SMALL.Problem.blocksize)/2);
|
ivan@107
|
85
|
idamnjanovic@6
|
86 SMALL.DL(1).param=struct(...
|
idamnjanovic@6
|
87 'Edata', Edata,...
|
idamnjanovic@6
|
88 'initdict', SMALL.Problem.initdict,...
|
idamnjanovic@6
|
89 'dictsize', SMALL.Problem.p,...
|
idamnjanovic@19
|
90 'iternum', 20);
|
idamnjanovic@19
|
91 %'memusage', 'high');
|
idamnjanovic@6
|
92
|
idamnjanovic@6
|
93 % Learn the dictionary
|
idamnjanovic@6
|
94
|
idamnjanovic@6
|
95 SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1));
|
idamnjanovic@6
|
96
|
idamnjanovic@6
|
97 % Set SMALL.Problem.A dictionary
|
idamnjanovic@6
|
98 % (backward compatiblity with SPARCO: solver structure communicate
|
idamnjanovic@6
|
99 % only with Problem structure, ie no direct communication between DL and
|
idamnjanovic@6
|
100 % solver structures)
|
idamnjanovic@6
|
101
|
idamnjanovic@6
|
102 SMALL.Problem.A = SMALL.DL(1).D;
|
ivan@161
|
103 SMALL.Problem.reconstruct = @(x) ImageDenoise_reconstruct(x, SMALL.Problem);
|
idamnjanovic@6
|
104
|
idamnjanovic@6
|
105 %%
|
idamnjanovic@6
|
106 % Initialising solver structure
|
idamnjanovic@6
|
107 % Setting solver structure fields (toolbox, name, param, solution,
|
idamnjanovic@6
|
108 % reconstructed and time) to zero values
|
idamnjanovic@6
|
109
|
idamnjanovic@6
|
110
|
idamnjanovic@6
|
111 SMALL.solver(1)=SMALL_init_solver;
|
idamnjanovic@6
|
112
|
idamnjanovic@6
|
113 % Defining the parameters needed for denoising
|
idamnjanovic@6
|
114
|
idamnjanovic@6
|
115 SMALL.solver(1).toolbox='ompbox';
|
ivan@107
|
116 SMALL.solver(1).name='omp2';
|
idamnjanovic@6
|
117
|
ivan@107
|
118 SMALL.solver(1).param=struct(...
|
ivan@107
|
119 'epsilon',Edata,...
|
ivan@107
|
120 'maxatoms', maxatoms);
|
ivan@107
|
121
|
ivan@107
|
122 % Denoising the image - find the sparse solution in the learned
|
ivan@107
|
123 % dictionary for all patches in the image and the end it uses
|
ivan@107
|
124 % reconstruction function to reconstruct the patches and put them into a
|
ivan@107
|
125 % denoised image
|
ivan@107
|
126
|
ivan@107
|
127 SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1));
|
ivan@107
|
128
|
ivan@107
|
129 % Show PSNR after reconstruction
|
ivan@107
|
130
|
ivan@107
|
131 SMALL.solver(1).reconstructed.psnr
|
ivan@107
|
132
|
idamnjanovic@6
|
133
|
idamnjanovic@6
|
134 %%
|
idamnjanovic@6
|
135 % Use SPAMS Online Dictionary Learning Algorithm
|
idamnjanovic@6
|
136 % to Learn overcomplete dictionary (Julien Mairal 2009)
|
idamnjanovic@6
|
137 % (If you have not installed SPAMS please comment the following two cells)
|
idamnjanovic@6
|
138
|
idamnjanovic@6
|
139 % Initialising Dictionary structure
|
idamnjanovic@6
|
140 % Setting Dictionary structure fields (toolbox, name, param, D and time)
|
idamnjanovic@6
|
141 % to zero values
|
idamnjanovic@6
|
142
|
idamnjanovic@6
|
143 SMALL.DL(2)=SMALL_init_DL();
|
idamnjanovic@6
|
144
|
idamnjanovic@6
|
145 % Defining fields needed for dictionary learning
|
idamnjanovic@6
|
146
|
idamnjanovic@6
|
147 SMALL.DL(2).toolbox = 'SPAMS';
|
idamnjanovic@6
|
148 SMALL.DL(2).name = 'mexTrainDL';
|
idamnjanovic@6
|
149
|
idamnjanovic@6
|
150 % Type 'help mexTrainDL in MATLAB prompt for explanation of parameters.
|
idamnjanovic@6
|
151
|
idamnjanovic@6
|
152 SMALL.DL(2).param=struct(...
|
idamnjanovic@6
|
153 'D', SMALL.Problem.initdict,...
|
idamnjanovic@6
|
154 'K', SMALL.Problem.p,...
|
idamnjanovic@6
|
155 'lambda', 2,...
|
idamnjanovic@6
|
156 'iter', 300,...
|
idamnjanovic@6
|
157 'mode', 3,...
|
idamnjanovic@6
|
158 'modeD', 0 );
|
idamnjanovic@6
|
159
|
idamnjanovic@6
|
160 % Learn the dictionary
|
idamnjanovic@6
|
161
|
idamnjanovic@6
|
162 SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2));
|
idamnjanovic@6
|
163
|
idamnjanovic@6
|
164 % Set SMALL.Problem.A dictionary
|
idamnjanovic@6
|
165 % (backward compatiblity with SPARCO: solver structure communicate
|
idamnjanovic@6
|
166 % only with Problem structure, ie no direct communication between DL and
|
idamnjanovic@6
|
167 % solver structures)
|
idamnjanovic@6
|
168
|
idamnjanovic@6
|
169 SMALL.Problem.A = SMALL.DL(2).D;
|
ivan@161
|
170 SMALL.Problem.reconstruct = @(x) ImageDenoise_reconstruct(x, SMALL.Problem);
|
idamnjanovic@6
|
171
|
idamnjanovic@6
|
172 %%
|
idamnjanovic@6
|
173 % Initialising solver structure
|
idamnjanovic@6
|
174 % Setting solver structure fields (toolbox, name, param, solution,
|
idamnjanovic@6
|
175 % reconstructed and time) to zero values
|
idamnjanovic@6
|
176
|
idamnjanovic@6
|
177 SMALL.solver(2)=SMALL_init_solver;
|
idamnjanovic@6
|
178
|
idamnjanovic@6
|
179 % Defining the parameters needed for denoising
|
idamnjanovic@6
|
180
|
idamnjanovic@6
|
181 SMALL.solver(2).toolbox='ompbox';
|
ivan@107
|
182 SMALL.solver(2).name='omp2';
|
ivan@107
|
183 SMALL.solver(2).param=struct(...
|
ivan@107
|
184 'epsilon',Edata,...
|
ivan@107
|
185 'maxatoms', maxatoms);
|
ivan@107
|
186
|
ivan@107
|
187 % Denoising the image - find the sparse solution in the learned
|
ivan@107
|
188 % dictionary for all patches in the image and the end it uses
|
ivan@107
|
189 % reconstruction function to reconstruct the patches and put them into a
|
ivan@107
|
190 % denoised image
|
ivan@107
|
191
|
ivan@107
|
192 SMALL.solver(2)=SMALL_solve(SMALL.Problem, SMALL.solver(2));
|
ivan@107
|
193
|
idamnjanovic@6
|
194
|
idamnjanovic@6
|
195
|
idamnjanovic@6
|
196
|
idamnjanovic@6
|
197 %% show results %%
|
idamnjanovic@6
|
198 % This will show denoised images and dictionaries for all training sets.
|
idamnjanovic@6
|
199 % If you are not interested to see them and do not want clutter your
|
idamnjanovic@6
|
200 % screen comment following line
|
idamnjanovic@6
|
201
|
idamnjanovic@6
|
202 SMALL_ImgDeNoiseResult(SMALL);
|
idamnjanovic@6
|
203
|
idamnjanovic@6
|
204 time(1,i) = SMALL.DL(1).time;
|
idamnjanovic@6
|
205 psnr(1,i) = SMALL.solver(1).reconstructed.psnr;
|
idamnjanovic@6
|
206
|
idamnjanovic@6
|
207 time(2,i) = SMALL.DL(2).time;
|
idamnjanovic@6
|
208 psnr(2,i) = SMALL.solver(2).reconstructed.psnr;
|
idamnjanovic@6
|
209
|
idamnjanovic@6
|
210 clear SMALL
|
idamnjanovic@6
|
211 end
|
idamnjanovic@6
|
212
|
idamnjanovic@6
|
213 %% show time and psnr %%
|
idamnjanovic@6
|
214 figure('Name', 'KSVD vs SPAMS');
|
idamnjanovic@6
|
215
|
idamnjanovic@6
|
216 subplot(1,2,1); plot(Training_size, time(1,:), 'ro-', Training_size, time(2,:), 'b*-');
|
idamnjanovic@6
|
217 legend('KSVD','SPAMS',0);
|
idamnjanovic@6
|
218 title('Time vs Training size');
|
idamnjanovic@19
|
219 xlabel('Training Size (Num. of patches)');
|
idamnjanovic@19
|
220 ylabel('Time(s)');
|
idamnjanovic@6
|
221 subplot(1,2,2); plot(Training_size, psnr(1,:), 'ro-', Training_size, psnr(2,:), 'b*-');
|
idamnjanovic@6
|
222 legend('KSVD','SPAMS',0);
|
idamnjanovic@19
|
223 title('PSNR vs Training size');
|
idamnjanovic@19
|
224 xlabel('Training Size (Num. of patches)');
|
idamnjanovic@19
|
225 ylabel('PSNR(dB)'); |