Mercurial > hg > smallbox
annotate DL/Majorization Minimization DL/ExactDicoRecovery/mmdl_cn.m @ 184:8fc38e8df8c6 danieleb
Minor edits
author | Daniele Barchiesi <daniele.barchiesi@eecs.qmul.ac.uk> |
---|---|
date | Fri, 27 Jan 2012 13:18:50 +0000 |
parents | b14209313ba4 |
children |
rev | line source |
---|---|
ivan@155 | 1 % Majorization Minimization for Dictionary Learning |
ivan@155 | 2 % Y = input data (M X L matrix) |
ivan@155 | 3 % Phi = initial dictionary (M X N), e.g. random dictionary or first N data samples |
ivan@155 | 4 % lambda = regularization coefficient (||Phi*X-Y||_F)^2 + lambda*||X||_1 |
ivan@155 | 5 % IT = number of iterations |
ivan@155 | 6 % res = dictionary constraint. 'un' = unit colomn norm, 'bn' = bounded colomn norm |
ivan@155 | 7 function [Phiout,X,ert] = mmdl_cn(Y,Phi,lambda,IT,res) |
ivan@155 | 8 maxIT = 1000; |
ivan@155 | 9 [PhiN,PhiM] = size(Phi); |
ivan@155 | 10 RR1 = PhiM; |
ivan@155 | 11 %%%%%%%%%%%%%% |
ivan@155 | 12 [PhiN,L] = size(Y); |
ivan@155 | 13 X = ones(PhiM,L); |
ivan@155 | 14 for it = 1:IT |
ivan@155 | 15 to = .1+svds(Phi,1); |
ivan@155 | 16 [PhiN,PhiM] = size(Phi); |
ivan@155 | 17 %%%% |
ivan@155 | 18 eps = 3*10^-4; |
ivan@155 | 19 map = 1; % Projecting on the selected space (0=no,1=yes) |
ivan@155 | 20 [X,l1err] = mm1(Phi,Y,X,to,lambda,maxIT,eps,map); %% Sparse approximation with Iterative Soft-thresholding |
ivan@155 | 21 ert(it) = l1err; |
ivan@155 | 22 %%% |
ivan@155 | 23 eps = 10^-7; |
ivan@155 | 24 [Phi,X] = dict_update_REG_cn(Phi,Y,X,maxIT,eps,res); |
ivan@155 | 25 end |
ivan@155 | 26 Phiout = Phi; |