Mercurial > hg > smallbox
view DL/Majorization Minimization DL/ExactDicoRecovery/mmdl_cn.m @ 155:b14209313ba4 ivand_dev
Integration of Majorization Minimisation Dictionary Learning
author | Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk> |
---|---|
date | Mon, 22 Aug 2011 11:46:35 +0100 |
parents | |
children |
line wrap: on
line source
% Majorization Minimization for Dictionary Learning % Y = input data (M X L matrix) % Phi = initial dictionary (M X N), e.g. random dictionary or first N data samples % lambda = regularization coefficient (||Phi*X-Y||_F)^2 + lambda*||X||_1 % IT = number of iterations % res = dictionary constraint. 'un' = unit colomn norm, 'bn' = bounded colomn norm function [Phiout,X,ert] = mmdl_cn(Y,Phi,lambda,IT,res) maxIT = 1000; [PhiN,PhiM] = size(Phi); RR1 = PhiM; %%%%%%%%%%%%%% [PhiN,L] = size(Y); X = ones(PhiM,L); for it = 1:IT to = .1+svds(Phi,1); [PhiN,PhiM] = size(Phi); %%%% eps = 3*10^-4; map = 1; % Projecting on the selected space (0=no,1=yes) [X,l1err] = mm1(Phi,Y,X,to,lambda,maxIT,eps,map); %% Sparse approximation with Iterative Soft-thresholding ert(it) = l1err; %%% eps = 10^-7; [Phi,X] = dict_update_REG_cn(Phi,Y,X,maxIT,eps,res); end Phiout = Phi;