annotate smacpy.py @ 35:f094fc50ff04 tip master

update readme, fix py3 note
author danstowell <danstowell@users.sourceforge.net>
date Wed, 15 Mar 2023 07:18:09 +0000
parents 469e69bdc354
children
rev   line source
danstowell@0 1 #!/bin/env python
danstowell@0 2 #
danstowell@0 3 # smacpy - simple-minded audio classifier in python
danstowell@0 4 #
danstowell@0 5 # Copyright (c) 2012 Dan Stowell and Queen Mary University of London
danstowell@0 6 #
danstowell@0 7 # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
danstowell@0 8 #
danstowell@0 9 # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
danstowell@0 10 #
danstowell@0 11 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
danstowell@0 12
danstowell@0 13 import os.path
danstowell@0 14 import numpy as np
danstowell@7 15 import argparse
danstowell@0 16 from glob import glob
danstowell@33 17 import librosa
danstowell@32 18 from sklearn.mixture import GaussianMixture as GMM
danstowell@0 19
danstowell@0 20 from MFCC import melScaling
danstowell@0 21
danstowell@0 22 #######################################################################
danstowell@0 23 # some settings
danstowell@0 24 framelen = 1024
danstowell@0 25 fs = 44100.0
danstowell@0 26 verbose = True
danstowell@0 27
danstowell@0 28 #######################################################################
danstowell@0 29 # main class
danstowell@0 30
danstowell@0 31 class Smacpy:
danstowell@16 32 """Smacpy - simple-minded audio classifier in python. See the README file for more details.
danstowell@0 33
danstowell@16 34 USAGE EXAMPLE:
danstowell@16 35 In this hypothetical example we train on four audio files, labelled as either 'usa' or 'uk', and then test on a separate audio file of someone called hubert:
danstowell@0 36
danstowell@16 37 from smacpy import Smacpy
danstowell@16 38 model = Smacpy("wavs/training", {'karen01.wav':'usa', 'john01.wav':'uk', 'steve02.wav':'usa', 'joe03.wav':'uk'})
danstowell@16 39 model.classify('wavs/testing/hubert01.wav')
danstowell@0 40
danstowell@16 41 Note for developers: this code should aim to be understandable, and not too long. Don't add too much functionality, or efficiency ;)
danstowell@0 42 """
danstowell@0 43
danstowell@0 44 def __init__(self, wavfolder, trainingdata):
danstowell@0 45 """Initialise the classifier and train it on some WAV files.
danstowell@0 46 'wavfolder' is the base folder, to be prepended to all WAV paths.
danstowell@0 47 'trainingdata' is a dictionary of wavpath:label pairs."""
danstowell@0 48
danstowell@33 49 self.mfccMaker = melScaling(int(fs), int(framelen/2), 40)
danstowell@4 50 self.mfccMaker.update()
danstowell@0 51
danstowell@4 52 allfeatures = {wavpath:self.file_to_features(os.path.join(wavfolder, wavpath)) for wavpath in trainingdata}
danstowell@4 53
danstowell@4 54 # Determine the normalisation stats, and remember them
danstowell@8 55 allconcat = np.vstack(list(allfeatures.values()))
danstowell@4 56 self.means = np.mean(allconcat, 0)
danstowell@4 57 self.invstds = np.std(allconcat, 0)
danstowell@4 58 for i,val in enumerate(self.invstds):
danstowell@0 59 if val == 0.0:
danstowell@4 60 self.invstds[i] = 1.0
danstowell@0 61 else:
danstowell@4 62 self.invstds[i] = 1.0 / val
danstowell@0 63
danstowell@0 64 # For each label, compile a normalised concatenated list of features
danstowell@0 65 aggfeatures = {}
danstowell@8 66 for wavpath, features in allfeatures.items():
danstowell@0 67 label = trainingdata[wavpath]
danstowell@4 68 normed = self.__normalise(features)
danstowell@0 69 if label not in aggfeatures:
danstowell@4 70 aggfeatures[label] = normed
danstowell@4 71 else:
danstowell@4 72 aggfeatures[label] = np.vstack((aggfeatures[label], normed))
danstowell@0 73
danstowell@4 74 # For each label's aggregated features, train a GMM and remember it
danstowell@0 75 self.gmms = {}
danstowell@8 76 for label, aggf in aggfeatures.items():
danstowell@16 77 if verbose: print(" Training a GMM for label %s, using data of shape %s" % (label, str(np.shape(aggf))))
danstowell@21 78 self.gmms[label] = GMM(n_components=10) # , cvtype='full')
danstowell@0 79 self.gmms[label].fit(aggf)
danstowell@16 80 if verbose: print(" Trained %i classes from %i input files" % (len(self.gmms), len(trainingdata)))
danstowell@0 81
danstowell@0 82 def __normalise(self, data):
danstowell@0 83 "Normalises data using the mean and stdev of the training data - so that everything is on a common scale."
danstowell@0 84 return (data - self.means) * self.invstds
danstowell@0 85
danstowell@0 86 def classify(self, wavpath):
danstowell@0 87 "Specify the path to an audio file, and this returns the max-likelihood class, as a string label."
danstowell@4 88 features = self.__normalise(self.file_to_features(wavpath))
danstowell@0 89 # For each label GMM, find the overall log-likelihood and choose the strongest
danstowell@0 90 bestlabel = ''
danstowell@0 91 bestll = -9e99
danstowell@8 92 for label, gmm in self.gmms.items():
danstowell@25 93 ll = gmm.score_samples(features)[0]
danstowell@4 94 ll = np.sum(ll)
danstowell@0 95 if ll > bestll:
danstowell@0 96 bestll = ll
danstowell@0 97 bestlabel = label
danstowell@0 98 return bestlabel
danstowell@0 99
danstowell@4 100 def file_to_features(self, wavpath):
danstowell@4 101 "Reads through a mono WAV file, converting each frame to the required features. Returns a 2D array."
danstowell@8 102 if verbose: print("Reading %s" % wavpath)
danstowell@23 103 if not os.path.isfile(wavpath): raise ValueError("path %s not found" % wavpath)
danstowell@33 104
danstowell@33 105 audiodata, _ = librosa.load(wavpath, sr=fs, mono=True)
danstowell@4 106 window = np.hamming(framelen)
danstowell@4 107 features = []
danstowell@33 108 chunkpos = 0
danstowell@4 109 while(True):
danstowell@4 110 try:
danstowell@33 111 chunk = audiodata[chunkpos:chunkpos+framelen]
danstowell@4 112 if len(chunk) != framelen:
danstowell@33 113 #print("Not read sufficient samples - assuming end of file")
danstowell@4 114 break
danstowell@4 115 framespectrum = np.fft.fft(window * chunk)
danstowell@33 116 magspec = abs(framespectrum[:int(framelen/2)])
danstowell@0 117
danstowell@4 118 # do the frequency warping and MFCC computation
danstowell@4 119 melSpectrum = self.mfccMaker.warpSpectrum(magspec)
danstowell@4 120 melCepstrum = self.mfccMaker.getMFCCs(melSpectrum,cn=True)
danstowell@4 121 melCepstrum = melCepstrum[1:] # exclude zeroth coefficient
danstowell@4 122 melCepstrum = melCepstrum[:13] # limit to lower MFCCs
danstowell@4 123
danstowell@4 124 framefeatures = melCepstrum # todo: include deltas? that can be your homework.
danstowell@4 125
danstowell@4 126 features.append(framefeatures)
danstowell@33 127
danstowell@33 128 chunkpos += framelen
danstowell@4 129 except RuntimeError:
danstowell@0 130 break
danstowell@33 131 if verbose: print(" Data shape: %s" % str(np.array(features).shape))
danstowell@16 132 return np.array(features)
danstowell@0 133
danstowell@0 134 #######################################################################
danstowell@15 135 def trainAndTest(trainpath, trainwavs, testpath, testwavs):
danstowell@16 136 "Handy function for evaluating your code: trains a model, tests it on wavs of known class. Returns (numcorrect, numtotal, numclasses)."
danstowell@15 137 print("TRAINING")
danstowell@15 138 model = Smacpy(trainpath, trainwavs)
danstowell@15 139 print("TESTING")
danstowell@15 140 ncorrect = 0
danstowell@15 141 for wavpath,label in testwavs.items():
danstowell@15 142 result = model.classify(os.path.join(testpath, wavpath))
danstowell@16 143 if verbose: print(" inferred: %s" % result)
danstowell@15 144 if result == label:
danstowell@15 145 ncorrect += 1
danstowell@15 146 return (ncorrect, len(testwavs), len(model.gmms))
danstowell@15 147
danstowell@15 148 #######################################################################
danstowell@4 149 # If this file is invoked as a script, it carries out a simple runthrough
danstowell@14 150 # of training on some wavs, then testing, with classnames being the start of the filenames
danstowell@0 151 if __name__ == '__main__':
danstowell@0 152
danstowell@7 153 # Handle the command-line arguments for where the train/test data comes from:
danstowell@7 154 parser = argparse.ArgumentParser()
danstowell@13 155 parser.add_argument('-t', '--trainpath', default='wavs', help="Path to the WAV files used for training")
danstowell@15 156 parser.add_argument('-T', '--testpath', help="Path to the WAV files used for testing")
danstowell@10 157 parser.add_argument('-q', dest='quiet', action='store_true', help="Be less verbose, don't output much text during processing")
danstowell@13 158 group = parser.add_mutually_exclusive_group()
danstowell@13 159 group.add_argument('-c', '--charsplit', default='_', help="Character used to split filenames: anything BEFORE this character is the class")
danstowell@13 160 group.add_argument('-n', '--numchars' , default=0 , help="Instead of splitting using 'charsplit', use this fixed number of characters from the start of the filename", type=int)
danstowell@7 161 args = vars(parser.parse_args())
danstowell@10 162 verbose = not args['quiet']
danstowell@7 163
danstowell@15 164 if args['testpath']==None:
danstowell@15 165 args['testpath'] = args['trainpath']
danstowell@15 166
danstowell@7 167 # Build up lists of the training and testing WAV files:
danstowell@7 168 wavsfound = {'trainpath':{}, 'testpath':{}}
danstowell@7 169 for onepath in ['trainpath', 'testpath']:
danstowell@7 170 pattern = os.path.join(args[onepath], '*.wav')
danstowell@7 171 for wavpath in glob(pattern):
danstowell@17 172 if args['numchars'] != 0:
danstowell@13 173 label = os.path.basename(wavpath)[:args['numchars']]
danstowell@13 174 else:
danstowell@13 175 label = os.path.basename(wavpath).split(args['charsplit'])[0]
danstowell@7 176 shortwavpath = os.path.relpath(wavpath, args[onepath])
danstowell@7 177 wavsfound[onepath][shortwavpath] = label
danstowell@7 178 if len(wavsfound[onepath])==0:
danstowell@7 179 raise RuntimeError("Found no files using this pattern: %s" % pattern)
danstowell@7 180 if verbose:
danstowell@8 181 print("Class-labels and filenames to be used from %s:" % onepath)
danstowell@8 182 for wavpath,label in sorted(wavsfound[onepath].items()):
danstowell@8 183 print(" %s: \t %s" % (label, wavpath))
danstowell@0 184
danstowell@16 185 if args['testpath'] != args['trainpath']:
danstowell@16 186 # Separate train-and-test collections
danstowell@16 187 ncorrect, ntotal, nclasses = trainAndTest(args['trainpath'], wavsfound['trainpath'], args['testpath'], wavsfound['testpath'])
danstowell@16 188 print("Got %i correct out of %i (trained on %i classes)" % (ncorrect, ntotal, nclasses))
danstowell@16 189 else:
danstowell@17 190 # This runs "stratified leave-one-out crossvalidation": test multiple times by leaving one-of-each-class out and training on the rest.
danstowell@17 191 # First we need to build a list of files grouped by each classlabel
danstowell@18 192 labelsinuse = sorted(list(set(wavsfound['trainpath'].values())))
danstowell@17 193 grouped = {label:[] for label in labelsinuse}
danstowell@17 194 for wavpath,label in wavsfound['trainpath'].items():
danstowell@17 195 grouped[label].append(wavpath)
danstowell@17 196 numfolds = min(len(collection) for collection in grouped.values())
danstowell@17 197 # Each "fold" will be a collection of one item of each label
danstowell@17 198 folds = [{wavpaths[index]:label for label,wavpaths in grouped.items()} for index in range(numfolds)]
danstowell@16 199 totcorrect, tottotal = (0,0)
danstowell@17 200 # Then we go through, each time training on all-but-one and testing on the one left out
danstowell@17 201 for index in range(numfolds):
danstowell@19 202 print("Fold %i of %i" % (index+1, numfolds))
danstowell@17 203 chosenfold = folds[index]
danstowell@17 204 alltherest = {}
danstowell@17 205 for whichfold, otherfold in enumerate(folds):
danstowell@17 206 if whichfold != index:
danstowell@17 207 alltherest.update(otherfold)
danstowell@17 208 ncorrect, ntotal, nclasses = trainAndTest(args['trainpath'], alltherest, args['trainpath'], chosenfold)
danstowell@16 209 totcorrect += ncorrect
danstowell@16 210 tottotal += ntotal
danstowell@17 211 print("Got %i correct out of %i (using stratified leave-one-out crossvalidation, %i folds)" % (totcorrect, tottotal, numfolds))
danstowell@0 212