Mercurial > hg > silvet
view mirex2012-matlab/cplcaMT.m @ 372:af71cbdab621 tip
Update bqvec code
author | Chris Cannam |
---|---|
date | Tue, 19 Nov 2019 10:13:32 +0000 |
parents | 8017dd4a650d |
children |
line wrap: on
line source
function [w,h,z,u,xa] = cplcaMT( x, K, T, R, w, h, z, u, iter, sw, sh, sz, su, lw, lh, lz, lu, pa) % function [w,h,xa2] = cplcaMT( x, K, T, R, w, h, z, u, iter, sw, sh, sz, su, lw, lh, lz, lu) % % Perform multiple-source, multiple-template SIPLCA for transcription % % Inputs: % x input distribution % K number of components % T size of components % R size of sources % w initial value of p(w) [default = random] % h initial value of p(h) [default = random] % z initial value of p(z) [default = random] % iter number of EM iterations [default = 10] % sw sparsity parameter for w [default = 1] % sh sparsity parameter for h [default = 1] % sz sparsity parameter for z [default = 1] % lw flag to update w [default = 1] % lh flag to update h [default = 1] % lh flag to update h [default = 1] % pa source-component activity range [Rx2] % % Outputs: % w p(w) - spectral bases % h p(h) - pitch impulse % z p(z) - mixing matrix for p(h) % xa approximation of input % Emmanouil Benetos 2011, based on cplca code by Paris Smaragdis % Sort out the sizes wc = 2*size(x)-T; hc = size(x)+T-1; % Default training iterations if ~exist( 'iter') iter = 10; end % Initialize sumx = sum(x); if ~exist( 'w') || isempty( w) w = cell(R, K); for k = 1:K for r=1:R w{r,k} = rand( T); w{r,k} = w{r,k} / sum( w{r,k}(:)); end end end if ~exist( 'h') || isempty( h) h = cell(1, K); for k = 1:K h{k} = rand( size(x)-T+1); h{k} = h{k}; end end if ~exist( 'z') || isempty( z) z = cell(1, K); for k = 1:K z{k} = rand( size(x,2),1); z{k} = z{k}; end end if ~exist( 'u') || isempty( u) u = cell(R, K); for k = 1:K for r=1:R if( (pa(r,1) <= k && k <= pa(r,2)) ) u{r,k} = ones( size(x,2),1); else u{r,k} = zeros( size(x,2),1); end end; end end fh = cell(1, K); fw = cell(R, K); for k = 1:K fh{k} = ones(wc) + 1i*ones(wc); for r=1:R fw{r,k} = ones(wc) + 1i*ones(wc); end; end; % Make commands for subsequent multidim operations and initialize fw fnh = 'c(hc(1)-(T(1)+(1:size(h{k},1))-2),hc(2)-(T(2)+(1:size(h{k},2))-2))'; xai = 'xa(1:size(x,1),1:size(x,2))'; flz = 'xbar(end:-1:1,end:-1:1)'; for k = 1:K for r=1:R if( (pa(r,1) <= k && k <= pa(r,2)) ) fw{r,k} = fftn( w{r,k}, wc); end; end; end; % Iterate for it = 1:iter %disp(['Iteration: ' num2str(it)]); % E-step xa = eps; for k = 16:73 fh{k} = fftn( h{k}, wc); for r=1:R if( (pa(r,1) <= k && k <= pa(r,2)) ) xa1 = abs( real( ifftn( fw{r,k} .* fh{k}))); xa = xa + xa1(1:size(x,1),1:size(x,2)) .*repmat(z{k},1,size(x,1))'.*repmat(u{r,k},1,size(x,1))'; clear xa1; end end end xbar = x ./ xa; xbar = eval( flz); fx = fftn( xbar, wc); % M-step for k = 16:73 % Update h, z, u nh=eps; for r=1:R if( (pa(r,1) <= k && k <= pa(r,2)) ) c = abs( real( ifftn( fx .* fw{r,k} ))); nh1 = eval( fnh); nh1 = nh1 .*repmat(u{r,k},1,size(h{k},1))'; nh = nh + nh1; nhu = eval( fnh); nhu = nhu .* h{k}; nu = sum(nhu)'; nu = u{r,k} .* nu + eps; if lu u{r,k} = nu; end; end; end nh = h{k} .* (nh.^sh); nz = sum(nh)'; nz = z{k} .* nz + eps; % Assign and normalize if lh h{k} = nh; end if lz z{k} = nz; end end % Normalize z over t if lz Z=[]; for i=1:K Z=[Z z{i}]; end; Z = Z.^sz; Z(1:end,1:15)=0; Z(1:end,74:88)=0; Z = Z./repmat(sum(Z,2),1,K); z = num2cell(Z,1); %figure; imagesc(imrotate(Z,90)); end % Normalize u over z,t if lu U=[]; for r=1:R U(r,:,:) = cell2mat(u(r,:)); end; for i=1:size(U,2) for j=1:size(U,3) U(:,i,j) = U(:,i,j).^su; U(:,i,j) = U(:,i,j) ./ sum(U(:,i,j)); end; end; U0 = permute(U,[2 1 3]); u = squeeze(num2cell(U0,1)); end % Normalize h over z,t H=[]; for k=1:K H(k,:,:) = cell2mat(h(k)); end; H0 = permute(H,[2 1 3]); for i=1:size(H0,2) for j=1:size(H0,3) H0(:,i,j) = sumx(j)* (H0(:,i,j) ./ sum(H0(:,i,j))); end; end; h = squeeze(num2cell(squeeze(H0),[1 3])); for k=1:K h{k} = squeeze(h{k}); end; %figure; imagesc(imrotate(xa',90)); end %figure; imagesc(imrotate(xa',90));