Mercurial > hg > sfx-subgrouping
view _code/Hierarchical Clustering.ipynb @ 37:d9a9a6b93026 tip
Add README
author | DaveM |
---|---|
date | Sat, 01 Apr 2017 17:03:14 +0100 |
parents | 4bdcab1e821c |
children |
line wrap: on
line source
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from matplotlib import pyplot as plt\n", "from scipy.cluster.hierarchy import dendrogram, linkage, cophenet\n", "from scipy.spatial.distance import pdist\n", "import sklearn \n", "import numpy as np\n", "import csv\n", "\n", "dataFolder = '../data/'\n", "keyFile = 'AdobeNormalised'\n", "datapath = dataFolder + keyFile" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "X = np.genfromtxt(datapath+'.csv', delimiter = ',', skip_header = 1)\n", "filenames = np.loadtxt(datapath+'_filenames.csv', dtype = str)\n", "labels = np.loadtxt(datapath+'_labels.csv', dtype = str)\n", "features = np.loadtxt(datapath+'_features.csv', dtype = str)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "agglo = cluster.FeatureAgglomeration()\n", "agglo.fit(X)\n", "X_reduced = agglo.transform(X)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "Z = linkage(X)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 8.51810000e-01 4.00000000e-06 2.46000000e-04 ..., 2.10260000e-02\n", " 1.98220000e-02 1.04000000e-04]\n", " [ 9.52275000e-01 7.00000000e-06 1.82600000e-03 ..., 1.79490000e-02\n", " 1.09020000e-02 7.20000000e-05]\n", " [ 1.92200000e-03 1.00000000e-06 1.39000000e-04 ..., 2.35900000e-02\n", " 6.93800000e-03 2.61000000e-04]\n", " ..., \n", " [ 9.96346000e-01 3.37000000e-04 1.23600000e-03 ..., 5.24103000e-01\n", " 3.36967000e-01 5.39000000e-04]\n", " [ 9.99990000e-01 1.00000000e-06 0.00000000e+00 ..., 0.00000000e+00\n", " 0.00000000e+00 0.00000000e+00]\n", " [ 9.96624000e-01 6.97000000e-04 2.59300000e-03 ..., 5.24615000e-01\n", " 3.34985000e-01 5.45000000e-04]]\n" ] } ], "source": [ "print X" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(8977, 1536)\n" ] } ], "source": [] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'nu_0': 0, 'kappa_0': 0, 'lambda_0': 0, 'mu_0': 0}\n" ] } ], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import pyBHC as bhc\n", "from pyBHC import dists\n", "\n", "mu_init = []\n", "sigma_init = []\n", "S_init = []\n", "cd = dists.NormalFixedCovar(mu_0=mu_init,sigma_0=sigma_init, S=S_init)\n", "\n", "# temp = cd.log_marginal_likelihood(X)\n", "d = bhc.rbhc(X, cd)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }