Mercurial > hg > sfx-subgrouping
comparison _code/Hierarchical Clustering.ipynb @ 32:4bdcab1e821c
tidy up directory
author | DaveM |
---|---|
date | Wed, 15 Mar 2017 11:33:55 +0000 |
parents | code/Hierarchical Clustering.ipynb@995546d09284 |
children |
comparison
equal
deleted
inserted
replaced
31:55813e99c6cf | 32:4bdcab1e821c |
---|---|
1 { | |
2 "cells": [ | |
3 { | |
4 "cell_type": "code", | |
5 "execution_count": 1, | |
6 "metadata": { | |
7 "collapsed": false | |
8 }, | |
9 "outputs": [], | |
10 "source": [ | |
11 "from matplotlib import pyplot as plt\n", | |
12 "from scipy.cluster.hierarchy import dendrogram, linkage, cophenet\n", | |
13 "from scipy.spatial.distance import pdist\n", | |
14 "import sklearn \n", | |
15 "import numpy as np\n", | |
16 "import csv\n", | |
17 "\n", | |
18 "dataFolder = '../data/'\n", | |
19 "keyFile = 'AdobeNormalised'\n", | |
20 "datapath = dataFolder + keyFile" | |
21 ] | |
22 }, | |
23 { | |
24 "cell_type": "code", | |
25 "execution_count": 2, | |
26 "metadata": { | |
27 "collapsed": true | |
28 }, | |
29 "outputs": [], | |
30 "source": [ | |
31 "X = np.genfromtxt(datapath+'.csv', delimiter = ',', skip_header = 1)\n", | |
32 "filenames = np.loadtxt(datapath+'_filenames.csv', dtype = str)\n", | |
33 "labels = np.loadtxt(datapath+'_labels.csv', dtype = str)\n", | |
34 "features = np.loadtxt(datapath+'_features.csv', dtype = str)\n" | |
35 ] | |
36 }, | |
37 { | |
38 "cell_type": "code", | |
39 "execution_count": null, | |
40 "metadata": { | |
41 "collapsed": false | |
42 }, | |
43 "outputs": [], | |
44 "source": [ | |
45 "agglo = cluster.FeatureAgglomeration()\n", | |
46 "agglo.fit(X)\n", | |
47 "X_reduced = agglo.transform(X)" | |
48 ] | |
49 }, | |
50 { | |
51 "cell_type": "code", | |
52 "execution_count": null, | |
53 "metadata": { | |
54 "collapsed": false | |
55 }, | |
56 "outputs": [], | |
57 "source": [ | |
58 "Z = linkage(X)" | |
59 ] | |
60 }, | |
61 { | |
62 "cell_type": "code", | |
63 "execution_count": 18, | |
64 "metadata": { | |
65 "collapsed": false | |
66 }, | |
67 "outputs": [ | |
68 { | |
69 "name": "stdout", | |
70 "output_type": "stream", | |
71 "text": [ | |
72 "[[ 8.51810000e-01 4.00000000e-06 2.46000000e-04 ..., 2.10260000e-02\n", | |
73 " 1.98220000e-02 1.04000000e-04]\n", | |
74 " [ 9.52275000e-01 7.00000000e-06 1.82600000e-03 ..., 1.79490000e-02\n", | |
75 " 1.09020000e-02 7.20000000e-05]\n", | |
76 " [ 1.92200000e-03 1.00000000e-06 1.39000000e-04 ..., 2.35900000e-02\n", | |
77 " 6.93800000e-03 2.61000000e-04]\n", | |
78 " ..., \n", | |
79 " [ 9.96346000e-01 3.37000000e-04 1.23600000e-03 ..., 5.24103000e-01\n", | |
80 " 3.36967000e-01 5.39000000e-04]\n", | |
81 " [ 9.99990000e-01 1.00000000e-06 0.00000000e+00 ..., 0.00000000e+00\n", | |
82 " 0.00000000e+00 0.00000000e+00]\n", | |
83 " [ 9.96624000e-01 6.97000000e-04 2.59300000e-03 ..., 5.24615000e-01\n", | |
84 " 3.34985000e-01 5.45000000e-04]]\n" | |
85 ] | |
86 } | |
87 ], | |
88 "source": [ | |
89 "print X" | |
90 ] | |
91 }, | |
92 { | |
93 "cell_type": "code", | |
94 "execution_count": 29, | |
95 "metadata": { | |
96 "collapsed": false | |
97 }, | |
98 "outputs": [ | |
99 { | |
100 "name": "stdout", | |
101 "output_type": "stream", | |
102 "text": [ | |
103 "(8977, 1536)\n" | |
104 ] | |
105 } | |
106 ], | |
107 "source": [] | |
108 }, | |
109 { | |
110 "cell_type": "code", | |
111 "execution_count": 42, | |
112 "metadata": { | |
113 "collapsed": false | |
114 }, | |
115 "outputs": [ | |
116 { | |
117 "name": "stdout", | |
118 "output_type": "stream", | |
119 "text": [ | |
120 "{'nu_0': 0, 'kappa_0': 0, 'lambda_0': 0, 'mu_0': 0}\n" | |
121 ] | |
122 } | |
123 ], | |
124 "source": [] | |
125 }, | |
126 { | |
127 "cell_type": "code", | |
128 "execution_count": null, | |
129 "metadata": { | |
130 "collapsed": true | |
131 }, | |
132 "outputs": [], | |
133 "source": [ | |
134 "import pyBHC as bhc\n", | |
135 "from pyBHC import dists\n", | |
136 "\n", | |
137 "mu_init = []\n", | |
138 "sigma_init = []\n", | |
139 "S_init = []\n", | |
140 "cd = dists.NormalFixedCovar(mu_0=mu_init,sigma_0=sigma_init, S=S_init)\n", | |
141 "\n", | |
142 "# temp = cd.log_marginal_likelihood(X)\n", | |
143 "d = bhc.rbhc(X, cd)" | |
144 ] | |
145 }, | |
146 { | |
147 "cell_type": "code", | |
148 "execution_count": null, | |
149 "metadata": { | |
150 "collapsed": true | |
151 }, | |
152 "outputs": [], | |
153 "source": [ | |
154 "\n", | |
155 "\n" | |
156 ] | |
157 }, | |
158 { | |
159 "cell_type": "code", | |
160 "execution_count": null, | |
161 "metadata": { | |
162 "collapsed": true | |
163 }, | |
164 "outputs": [], | |
165 "source": [] | |
166 }, | |
167 { | |
168 "cell_type": "code", | |
169 "execution_count": null, | |
170 "metadata": { | |
171 "collapsed": true | |
172 }, | |
173 "outputs": [], | |
174 "source": [] | |
175 }, | |
176 { | |
177 "cell_type": "code", | |
178 "execution_count": null, | |
179 "metadata": { | |
180 "collapsed": true | |
181 }, | |
182 "outputs": [], | |
183 "source": [] | |
184 } | |
185 ], | |
186 "metadata": { | |
187 "kernelspec": { | |
188 "display_name": "Python 2", | |
189 "language": "python", | |
190 "name": "python2" | |
191 }, | |
192 "language_info": { | |
193 "codemirror_mode": { | |
194 "name": "ipython", | |
195 "version": 2 | |
196 }, | |
197 "file_extension": ".py", | |
198 "mimetype": "text/x-python", | |
199 "name": "python", | |
200 "nbconvert_exporter": "python", | |
201 "pygments_lexer": "ipython2", | |
202 "version": "2.7.10" | |
203 } | |
204 }, | |
205 "nbformat": 4, | |
206 "nbformat_minor": 0 | |
207 } |