comparison _code/Hierarchical Clustering.ipynb @ 32:4bdcab1e821c

tidy up directory
author DaveM
date Wed, 15 Mar 2017 11:33:55 +0000
parents code/Hierarchical Clustering.ipynb@995546d09284
children
comparison
equal deleted inserted replaced
31:55813e99c6cf 32:4bdcab1e821c
1 {
2 "cells": [
3 {
4 "cell_type": "code",
5 "execution_count": 1,
6 "metadata": {
7 "collapsed": false
8 },
9 "outputs": [],
10 "source": [
11 "from matplotlib import pyplot as plt\n",
12 "from scipy.cluster.hierarchy import dendrogram, linkage, cophenet\n",
13 "from scipy.spatial.distance import pdist\n",
14 "import sklearn \n",
15 "import numpy as np\n",
16 "import csv\n",
17 "\n",
18 "dataFolder = '../data/'\n",
19 "keyFile = 'AdobeNormalised'\n",
20 "datapath = dataFolder + keyFile"
21 ]
22 },
23 {
24 "cell_type": "code",
25 "execution_count": 2,
26 "metadata": {
27 "collapsed": true
28 },
29 "outputs": [],
30 "source": [
31 "X = np.genfromtxt(datapath+'.csv', delimiter = ',', skip_header = 1)\n",
32 "filenames = np.loadtxt(datapath+'_filenames.csv', dtype = str)\n",
33 "labels = np.loadtxt(datapath+'_labels.csv', dtype = str)\n",
34 "features = np.loadtxt(datapath+'_features.csv', dtype = str)\n"
35 ]
36 },
37 {
38 "cell_type": "code",
39 "execution_count": null,
40 "metadata": {
41 "collapsed": false
42 },
43 "outputs": [],
44 "source": [
45 "agglo = cluster.FeatureAgglomeration()\n",
46 "agglo.fit(X)\n",
47 "X_reduced = agglo.transform(X)"
48 ]
49 },
50 {
51 "cell_type": "code",
52 "execution_count": null,
53 "metadata": {
54 "collapsed": false
55 },
56 "outputs": [],
57 "source": [
58 "Z = linkage(X)"
59 ]
60 },
61 {
62 "cell_type": "code",
63 "execution_count": 18,
64 "metadata": {
65 "collapsed": false
66 },
67 "outputs": [
68 {
69 "name": "stdout",
70 "output_type": "stream",
71 "text": [
72 "[[ 8.51810000e-01 4.00000000e-06 2.46000000e-04 ..., 2.10260000e-02\n",
73 " 1.98220000e-02 1.04000000e-04]\n",
74 " [ 9.52275000e-01 7.00000000e-06 1.82600000e-03 ..., 1.79490000e-02\n",
75 " 1.09020000e-02 7.20000000e-05]\n",
76 " [ 1.92200000e-03 1.00000000e-06 1.39000000e-04 ..., 2.35900000e-02\n",
77 " 6.93800000e-03 2.61000000e-04]\n",
78 " ..., \n",
79 " [ 9.96346000e-01 3.37000000e-04 1.23600000e-03 ..., 5.24103000e-01\n",
80 " 3.36967000e-01 5.39000000e-04]\n",
81 " [ 9.99990000e-01 1.00000000e-06 0.00000000e+00 ..., 0.00000000e+00\n",
82 " 0.00000000e+00 0.00000000e+00]\n",
83 " [ 9.96624000e-01 6.97000000e-04 2.59300000e-03 ..., 5.24615000e-01\n",
84 " 3.34985000e-01 5.45000000e-04]]\n"
85 ]
86 }
87 ],
88 "source": [
89 "print X"
90 ]
91 },
92 {
93 "cell_type": "code",
94 "execution_count": 29,
95 "metadata": {
96 "collapsed": false
97 },
98 "outputs": [
99 {
100 "name": "stdout",
101 "output_type": "stream",
102 "text": [
103 "(8977, 1536)\n"
104 ]
105 }
106 ],
107 "source": []
108 },
109 {
110 "cell_type": "code",
111 "execution_count": 42,
112 "metadata": {
113 "collapsed": false
114 },
115 "outputs": [
116 {
117 "name": "stdout",
118 "output_type": "stream",
119 "text": [
120 "{'nu_0': 0, 'kappa_0': 0, 'lambda_0': 0, 'mu_0': 0}\n"
121 ]
122 }
123 ],
124 "source": []
125 },
126 {
127 "cell_type": "code",
128 "execution_count": null,
129 "metadata": {
130 "collapsed": true
131 },
132 "outputs": [],
133 "source": [
134 "import pyBHC as bhc\n",
135 "from pyBHC import dists\n",
136 "\n",
137 "mu_init = []\n",
138 "sigma_init = []\n",
139 "S_init = []\n",
140 "cd = dists.NormalFixedCovar(mu_0=mu_init,sigma_0=sigma_init, S=S_init)\n",
141 "\n",
142 "# temp = cd.log_marginal_likelihood(X)\n",
143 "d = bhc.rbhc(X, cd)"
144 ]
145 },
146 {
147 "cell_type": "code",
148 "execution_count": null,
149 "metadata": {
150 "collapsed": true
151 },
152 "outputs": [],
153 "source": [
154 "\n",
155 "\n"
156 ]
157 },
158 {
159 "cell_type": "code",
160 "execution_count": null,
161 "metadata": {
162 "collapsed": true
163 },
164 "outputs": [],
165 "source": []
166 },
167 {
168 "cell_type": "code",
169 "execution_count": null,
170 "metadata": {
171 "collapsed": true
172 },
173 "outputs": [],
174 "source": []
175 },
176 {
177 "cell_type": "code",
178 "execution_count": null,
179 "metadata": {
180 "collapsed": true
181 },
182 "outputs": [],
183 "source": []
184 }
185 ],
186 "metadata": {
187 "kernelspec": {
188 "display_name": "Python 2",
189 "language": "python",
190 "name": "python2"
191 },
192 "language_info": {
193 "codemirror_mode": {
194 "name": "ipython",
195 "version": 2
196 },
197 "file_extension": ".py",
198 "mimetype": "text/x-python",
199 "name": "python",
200 "nbconvert_exporter": "python",
201 "pygments_lexer": "ipython2",
202 "version": "2.7.10"
203 }
204 },
205 "nbformat": 4,
206 "nbformat_minor": 0
207 }