DaveM@33
|
1 diary('AnalysisOutput.txt');
|
DaveM@33
|
2 dendrogram(linkList);
|
DaveM@33
|
3 currentRow = [2*listSize-1];
|
DaveM@33
|
4
|
DaveM@33
|
5 while (~isempty(currentRow))
|
DaveM@33
|
6 if(currentRow(1) > listSize)
|
DaveM@33
|
7 row = currentRow(1) - listSize
|
DaveM@33
|
8 if(~isempty(featureList{row,1}))
|
DaveM@33
|
9 % featureList{row,4} = calcLoss(linkList,featureList, row);
|
DaveM@33
|
10 classList = traceLinkageToBinary(linkList,row);
|
DaveM@33
|
11 X = data(classList>0,featureList{row,1});
|
DaveM@33
|
12 Y = classList(classList>0);
|
DaveM@33
|
13
|
DaveM@33
|
14 [L,se] = loss(featureList{row,3},X,Y);
|
DaveM@33
|
15 featureList{row,4} = [L, se];
|
DaveM@33
|
16
|
DaveM@33
|
17 pDepth = max(featureList{row,3}.PruneList);
|
DaveM@33
|
18
|
DaveM@33
|
19 lossVal = 1;
|
DaveM@33
|
20 while (lossVal > 0.2 && pDepth > 1)
|
DaveM@33
|
21 pDepth = pDepth - 1;
|
DaveM@33
|
22 T1 = prune(featureList{row,3},'Level',pDepth);
|
DaveM@33
|
23 lossVal = loss(T1,X,Y);
|
DaveM@33
|
24 end
|
DaveM@33
|
25 fprintf('Row: %d, pDepth = %d, loss = %f\n',row,pDepth,lossVal);
|
DaveM@33
|
26 view(T1);
|
DaveM@33
|
27 currentRow = [currentRow; linkList(row,1); linkList(row,2)];
|
DaveM@33
|
28 end
|
DaveM@33
|
29 end
|
DaveM@33
|
30 currentRow = currentRow(2:end);
|
DaveM@33
|
31 end
|
DaveM@33
|
32
|
DaveM@33
|
33 diary off
|
DaveM@33
|
34 %%
|
DaveM@33
|
35
|