Mercurial > hg > segmenter-vamp-plugin
view armadillo-3.900.4/include/armadillo_bits/op_symmat_meat.hpp @ 84:55a047986812 tip
Update library URI so as not to be document-local
author | Chris Cannam |
---|---|
date | Wed, 22 Apr 2020 14:21:57 +0100 |
parents | 1ec0e2823891 |
children |
line wrap: on
line source
// Copyright (C) 2011-2012 NICTA (www.nicta.com.au) // Copyright (C) 2011-2012 Conrad Sanderson // // This Source Code Form is subject to the terms of the Mozilla Public // License, v. 2.0. If a copy of the MPL was not distributed with this // file, You can obtain one at http://mozilla.org/MPL/2.0/. //! \addtogroup op_symmat //! @{ template<typename T1> inline void op_symmat::apply ( Mat<typename T1::elem_type>& out, const Op<T1,op_symmat>& in, const typename arma_not_cx<typename T1::elem_type>::result* junk ) { arma_extra_debug_sigprint(); arma_ignore(junk); typedef typename T1::elem_type eT; const unwrap<T1> tmp(in.m); const Mat<eT>& A = tmp.M; arma_debug_check( (A.is_square() == false), "symmatu()/symmatl(): given matrix must be square" ); const uword N = A.n_rows; const bool upper = (in.aux_uword_a == 0); if(&out != &A) { out.copy_size(A); if(upper) { // upper triangular: copy the diagonal and the elements above the diagonal for(uword i=0; i<N; ++i) { const eT* A_data = A.colptr(i); eT* out_data = out.colptr(i); arrayops::copy( out_data, A_data, i+1 ); } } else { // lower triangular: copy the diagonal and the elements below the diagonal for(uword i=0; i<N; ++i) { const eT* A_data = A.colptr(i); eT* out_data = out.colptr(i); arrayops::copy( &out_data[i], &A_data[i], N-i ); } } } if(upper) { // reflect elements across the diagonal from upper triangle to lower triangle for(uword col=1; col < N; ++col) { const eT* coldata = out.colptr(col); for(uword row=0; row < col; ++row) { out.at(col,row) = coldata[row]; } } } else { // reflect elements across the diagonal from lower triangle to upper triangle for(uword col=0; col < N; ++col) { const eT* coldata = out.colptr(col); for(uword row=(col+1); row < N; ++row) { out.at(col,row) = coldata[row]; } } } } template<typename T1> inline void op_symmat::apply ( Mat<typename T1::elem_type>& out, const Op<T1,op_symmat>& in, const typename arma_cx_only<typename T1::elem_type>::result* junk ) { arma_extra_debug_sigprint(); arma_ignore(junk); typedef typename T1::elem_type eT; const unwrap<T1> tmp(in.m); const Mat<eT>& A = tmp.M; arma_debug_check( (A.is_square() == false), "symmatu()/symmatl(): given matrix must be square" ); const uword N = A.n_rows; const bool upper = (in.aux_uword_a == 0); if(&out != &A) { out.copy_size(A); if(upper) { // upper triangular: copy the diagonal and the elements above the diagonal for(uword i=0; i<N; ++i) { const eT* A_data = A.colptr(i); eT* out_data = out.colptr(i); arrayops::copy( out_data, A_data, i+1 ); } } else { // lower triangular: copy the diagonal and the elements below the diagonal for(uword i=0; i<N; ++i) { const eT* A_data = A.colptr(i); eT* out_data = out.colptr(i); arrayops::copy( &out_data[i], &A_data[i], N-i ); } } } if(upper) { // reflect elements across the diagonal from upper triangle to lower triangle for(uword col=1; col < N; ++col) { const eT* coldata = out.colptr(col); for(uword row=0; row < col; ++row) { out.at(col,row) = std::conj(coldata[row]); } } } else { // reflect elements across the diagonal from lower triangle to upper triangle for(uword col=0; col < N; ++col) { const eT* coldata = out.colptr(col); for(uword row=(col+1); row < N; ++row) { out.at(col,row) = std::conj(coldata[row]); } } } } //! @}