Mercurial > hg > segmenter-vamp-plugin
view armadillo-3.900.4/include/armadillo_bits/op_sum_meat.hpp @ 84:55a047986812 tip
Update library URI so as not to be document-local
author | Chris Cannam |
---|---|
date | Wed, 22 Apr 2020 14:21:57 +0100 |
parents | 1ec0e2823891 |
children |
line wrap: on
line source
// Copyright (C) 2008-2013 NICTA (www.nicta.com.au) // Copyright (C) 2008-2013 Conrad Sanderson // // This Source Code Form is subject to the terms of the Mozilla Public // License, v. 2.0. If a copy of the MPL was not distributed with this // file, You can obtain one at http://mozilla.org/MPL/2.0/. //! \addtogroup op_sum //! @{ //! \brief //! Immediate sum of elements of a matrix along a specified dimension (either rows or columns). //! The result is stored in a dense matrix that has either one column or one row. //! See the sum() function for more details. template<typename T1> arma_hot inline void op_sum::apply(Mat<typename T1::elem_type>& out, const Op<T1,op_sum>& in) { arma_extra_debug_sigprint(); typedef typename T1::elem_type eT; const uword dim = in.aux_uword_a; arma_debug_check( (dim > 1), "sum(): incorrect usage. dim must be 0 or 1"); const Proxy<T1> P(in.m); typedef typename Proxy<T1>::stored_type P_stored_type; const bool is_alias = P.is_alias(out); if( (is_Mat<P_stored_type>::value == true) || is_alias ) { const unwrap_check<P_stored_type> tmp(P.Q, is_alias); const typename unwrap_check<P_stored_type>::stored_type& X = tmp.M; const uword X_n_rows = X.n_rows; const uword X_n_cols = X.n_cols; if(dim == 0) // traverse across rows (i.e. find the sum in each column) { out.set_size(1, X_n_cols); eT* out_mem = out.memptr(); for(uword col=0; col < X_n_cols; ++col) { out_mem[col] = arrayops::accumulate( X.colptr(col), X_n_rows ); } } else // traverse across columns (i.e. find the sum in each row) { out.set_size(X_n_rows, 1); eT* out_mem = out.memptr(); for(uword row=0; row < X_n_rows; ++row) { eT val = eT(0); uword i,j; for(i=0, j=1; j < X_n_cols; i+=2, j+=2) { val += X.at(row,i); val += X.at(row,j); } if(i < X_n_cols) { val += X.at(row,i); } out_mem[row] = val; } } } else { const uword P_n_rows = P.get_n_rows(); const uword P_n_cols = P.get_n_cols(); if(dim == 0) // traverse across rows (i.e. find the sum in each column) { out.set_size(1, P_n_cols); eT* out_mem = out.memptr(); for(uword col=0; col < P_n_cols; ++col) { eT val = eT(0); uword i,j; for(i=0, j=1; j < P_n_rows; i+=2, j+=2) { val += P.at(i,col); val += P.at(j,col); } if(i < P_n_rows) { val += P.at(i,col); } out_mem[col] = val; } } else // traverse across columns (i.e. find the sum in each row) { out.set_size(P_n_rows, 1); eT* out_mem = out.memptr(); for(uword row=0; row < P_n_rows; ++row) { eT val = eT(0); uword i,j; for(i=0, j=1; j < P_n_cols; i+=2, j+=2) { val += P.at(row,i); val += P.at(row,j); } if(i < P_n_cols) { val += P.at(row,i); } out_mem[row] = val; } } } } //! @}