Mercurial > hg > segmenter-vamp-plugin
view armadillo-3.900.4/include/armadillo_bits/op_stddev_meat.hpp @ 84:55a047986812 tip
Update library URI so as not to be document-local
author | Chris Cannam |
---|---|
date | Wed, 22 Apr 2020 14:21:57 +0100 |
parents | 1ec0e2823891 |
children |
line wrap: on
line source
// Copyright (C) 2009-2011 NICTA (www.nicta.com.au) // Copyright (C) 2009-2011 Conrad Sanderson // // This Source Code Form is subject to the terms of the Mozilla Public // License, v. 2.0. If a copy of the MPL was not distributed with this // file, You can obtain one at http://mozilla.org/MPL/2.0/. //! \addtogroup op_stddev //! @{ //! \brief //! For each row or for each column, find the standard deviation. //! The result is stored in a dense matrix that has either one column or one row. //! The dimension for which the standard deviations are found is set via the stddev() function. template<typename T1> inline void op_stddev::apply(Mat<typename T1::pod_type>& out, const mtOp<typename T1::pod_type, T1, op_stddev>& in) { arma_extra_debug_sigprint(); typedef typename T1::elem_type in_eT; typedef typename T1::pod_type out_eT; const unwrap_check_mixed<T1> tmp(in.m, out); const Mat<in_eT>& X = tmp.M; const uword norm_type = in.aux_uword_a; const uword dim = in.aux_uword_b; arma_debug_check( (norm_type > 1), "stddev(): incorrect usage. norm_type must be 0 or 1"); arma_debug_check( (dim > 1), "stddev(): incorrect usage. dim must be 0 or 1" ); const uword X_n_rows = X.n_rows; const uword X_n_cols = X.n_cols; if(dim == 0) { arma_extra_debug_print("op_stddev::apply(), dim = 0"); arma_debug_check( (X_n_rows == 0), "stddev(): given object has zero rows" ); out.set_size(1, X_n_cols); out_eT* out_mem = out.memptr(); for(uword col=0; col<X_n_cols; ++col) { out_mem[col] = std::sqrt( op_var::direct_var( X.colptr(col), X_n_rows, norm_type ) ); } } else if(dim == 1) { arma_extra_debug_print("op_stddev::apply(), dim = 1"); arma_debug_check( (X_n_cols == 0), "stddev(): given object has zero columns" ); out.set_size(X_n_rows, 1); podarray<in_eT> dat(X_n_cols); in_eT* dat_mem = dat.memptr(); out_eT* out_mem = out.memptr(); for(uword row=0; row<X_n_rows; ++row) { dat.copy_row(X, row); out_mem[row] = std::sqrt( op_var::direct_var( dat_mem, X_n_cols, norm_type) ); } } } //! @}