Mercurial > hg > segmenter-vamp-plugin
view armadillo-3.900.4/include/armadillo_bits/op_mean_meat.hpp @ 84:55a047986812 tip
Update library URI so as not to be document-local
author | Chris Cannam |
---|---|
date | Wed, 22 Apr 2020 14:21:57 +0100 |
parents | 1ec0e2823891 |
children |
line wrap: on
line source
// Copyright (C) 2009-2012 NICTA (www.nicta.com.au) // Copyright (C) 2009-2012 Conrad Sanderson // // This Source Code Form is subject to the terms of the Mozilla Public // License, v. 2.0. If a copy of the MPL was not distributed with this // file, You can obtain one at http://mozilla.org/MPL/2.0/. //! \addtogroup op_mean //! @{ //! \brief //! For each row or for each column, find the mean value. //! The result is stored in a dense matrix that has either one column or one row. //! The dimension, for which the means are found, is set via the mean() function. template<typename T1> inline void op_mean::apply(Mat<typename T1::elem_type>& out, const Op<T1,op_mean>& in) { arma_extra_debug_sigprint(); typedef typename T1::elem_type eT; const unwrap_check<T1> tmp(in.m, out); const Mat<eT>& X = tmp.M; const uword dim = in.aux_uword_a; arma_debug_check( (dim > 1), "mean(): incorrect usage. dim must be 0 or 1"); const uword X_n_rows = X.n_rows; const uword X_n_cols = X.n_cols; if(dim == 0) { arma_extra_debug_print("op_mean::apply(), dim = 0"); out.set_size( (X_n_rows > 0) ? 1 : 0, X_n_cols ); if(X_n_rows > 0) { eT* out_mem = out.memptr(); for(uword col=0; col < X_n_cols; ++col) { out_mem[col] = op_mean::direct_mean( X.colptr(col), X_n_rows ); } } } else if(dim == 1) { arma_extra_debug_print("op_mean::apply(), dim = 1"); out.set_size(X_n_rows, (X_n_cols > 0) ? 1 : 0); if(X_n_cols > 0) { eT* out_mem = out.memptr(); for(uword row=0; row < X_n_rows; ++row) { out_mem[row] = op_mean::direct_mean( X, row ); } } } } template<typename eT> arma_pure inline eT op_mean::direct_mean(const eT* const X, const uword n_elem) { arma_extra_debug_sigprint(); typedef typename get_pod_type<eT>::result T; const eT result = arrayops::accumulate(X, n_elem) / T(n_elem); return arma_isfinite(result) ? result : op_mean::direct_mean_robust(X, n_elem); } template<typename eT> arma_pure inline eT op_mean::direct_mean_robust(const eT* const X, const uword n_elem) { arma_extra_debug_sigprint(); // use an adapted form of the mean finding algorithm from the running_stat class typedef typename get_pod_type<eT>::result T; uword i,j; eT r_mean = eT(0); for(i=0, j=1; j<n_elem; i+=2, j+=2) { const eT Xi = X[i]; const eT Xj = X[j]; r_mean = r_mean + (Xi - r_mean)/T(j); // we need i+1, and j is equivalent to i+1 here r_mean = r_mean + (Xj - r_mean)/T(j+1); } if(i < n_elem) { const eT Xi = X[i]; r_mean = r_mean + (Xi - r_mean)/T(i+1); } return r_mean; } template<typename eT> inline eT op_mean::direct_mean(const Mat<eT>& X, const uword row) { arma_extra_debug_sigprint(); typedef typename get_pod_type<eT>::result T; const uword X_n_cols = X.n_cols; eT val = eT(0); uword i,j; for(i=0, j=1; j < X_n_cols; i+=2, j+=2) { val += X.at(row,i); val += X.at(row,j); } if(i < X_n_cols) { val += X.at(row,i); } const eT result = val / T(X_n_cols); return arma_isfinite(result) ? result : op_mean::direct_mean_robust(X, row); } template<typename eT> inline eT op_mean::direct_mean_robust(const Mat<eT>& X, const uword row) { arma_extra_debug_sigprint(); typedef typename get_pod_type<eT>::result T; const uword X_n_cols = X.n_cols; eT r_mean = eT(0); for(uword col=0; col < X_n_cols; ++col) { r_mean = r_mean + (X.at(row,col) - r_mean)/T(col+1); } return r_mean; } template<typename eT> inline eT op_mean::mean_all(const subview<eT>& X) { arma_extra_debug_sigprint(); typedef typename get_pod_type<eT>::result T; const uword X_n_rows = X.n_rows; const uword X_n_cols = X.n_cols; const uword X_n_elem = X.n_elem; arma_debug_check( (X_n_elem == 0), "mean(): given object has no elements" ); eT val = eT(0); if(X_n_rows == 1) { const Mat<eT>& A = X.m; const uword start_row = X.aux_row1; const uword start_col = X.aux_col1; const uword end_col_p1 = start_col + X_n_cols; uword i,j; for(i=start_col, j=start_col+1; j < end_col_p1; i+=2, j+=2) { val += A.at(start_row, i); val += A.at(start_row, j); } if(i < end_col_p1) { val += A.at(start_row, i); } } else { for(uword col=0; col < X_n_cols; ++col) { val += arrayops::accumulate(X.colptr(col), X_n_rows); } } const eT result = val / T(X_n_elem); return arma_isfinite(result) ? result : op_mean::mean_all_robust(X); } template<typename eT> inline eT op_mean::mean_all_robust(const subview<eT>& X) { arma_extra_debug_sigprint(); typedef typename get_pod_type<eT>::result T; const uword X_n_rows = X.n_rows; const uword X_n_cols = X.n_cols; const uword start_row = X.aux_row1; const uword start_col = X.aux_col1; const uword end_row_p1 = start_row + X_n_rows; const uword end_col_p1 = start_col + X_n_cols; const Mat<eT>& A = X.m; eT r_mean = eT(0); if(X_n_rows == 1) { uword i=0; for(uword col = start_col; col < end_col_p1; ++col, ++i) { r_mean = r_mean + (A.at(start_row,col) - r_mean)/T(i+1); } } else { uword i=0; for(uword col = start_col; col < end_col_p1; ++col) for(uword row = start_row; row < end_row_p1; ++row, ++i) { r_mean = r_mean + (A.at(row,col) - r_mean)/T(i+1); } } return r_mean; } template<typename eT> inline eT op_mean::mean_all(const diagview<eT>& X) { arma_extra_debug_sigprint(); typedef typename get_pod_type<eT>::result T; const uword X_n_elem = X.n_elem; arma_debug_check( (X_n_elem == 0), "mean(): given object has no elements" ); eT val = eT(0); for(uword i=0; i<X_n_elem; ++i) { val += X[i]; } const eT result = val / T(X_n_elem); return arma_isfinite(result) ? result : op_mean::mean_all_robust(X); } template<typename eT> inline eT op_mean::mean_all_robust(const diagview<eT>& X) { arma_extra_debug_sigprint(); typedef typename get_pod_type<eT>::result T; const uword X_n_elem = X.n_elem; eT r_mean = eT(0); for(uword i=0; i<X_n_elem; ++i) { r_mean = r_mean + (X[i] - r_mean)/T(i+1); } return r_mean; } template<typename T1> inline typename T1::elem_type op_mean::mean_all(const Base<typename T1::elem_type, T1>& X) { arma_extra_debug_sigprint(); typedef typename T1::elem_type eT; const unwrap<T1> tmp(X.get_ref()); const Mat<eT>& A = tmp.M; const uword A_n_elem = A.n_elem; arma_debug_check( (A_n_elem == 0), "mean(): given object has no elements" ); return op_mean::direct_mean(A.memptr(), A_n_elem); } template<typename eT> arma_inline eT op_mean::robust_mean(const eT A, const eT B) { return A + (B - A)/eT(2); } template<typename T> arma_inline std::complex<T> op_mean::robust_mean(const std::complex<T>& A, const std::complex<T>& B) { return A + (B - A)/T(2); } //! @}