Mercurial > hg > segmenter-vamp-plugin
view armadillo-3.900.4/include/armadillo_bits/op_cx_scalar_meat.hpp @ 84:55a047986812 tip
Update library URI so as not to be document-local
author | Chris Cannam |
---|---|
date | Wed, 22 Apr 2020 14:21:57 +0100 |
parents | 1ec0e2823891 |
children |
line wrap: on
line source
// Copyright (C) 2008-2013 NICTA (www.nicta.com.au) // Copyright (C) 2008-2013 Conrad Sanderson // // This Source Code Form is subject to the terms of the Mozilla Public // License, v. 2.0. If a copy of the MPL was not distributed with this // file, You can obtain one at http://mozilla.org/MPL/2.0/. //! \addtogroup op_cx_scalar //! @{ template<typename T1> inline void op_cx_scalar_times::apply ( Mat< typename std::complex<typename T1::pod_type> >& out, const mtOp<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_times>& X ) { arma_extra_debug_sigprint(); typedef typename std::complex<typename T1::pod_type> eT; const Proxy<T1> A(X.m); const uword n_rows = A.get_n_rows(); const uword n_cols = A.get_n_cols(); out.set_size(n_rows, n_cols); const eT k = X.aux_out_eT; eT* out_mem = out.memptr(); if(Proxy<T1>::prefer_at_accessor == false) { const uword n_elem = A.get_n_elem(); for(uword i=0; i<n_elem; ++i) { out_mem[i] = A[i] * k; } } else { for(uword col=0; col < n_cols; ++col) for(uword row=0; row < n_rows; ++row) { *out_mem = A.at(row,col) * k; ++out_mem; } } } template<typename T1> inline void op_cx_scalar_plus::apply ( Mat< typename std::complex<typename T1::pod_type> >& out, const mtOp<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_plus>& X ) { arma_extra_debug_sigprint(); typedef typename std::complex<typename T1::pod_type> eT; const Proxy<T1> A(X.m); const uword n_rows = A.get_n_rows(); const uword n_cols = A.get_n_cols(); out.set_size(n_rows, n_cols); const eT k = X.aux_out_eT; eT* out_mem = out.memptr(); if(Proxy<T1>::prefer_at_accessor == false) { const uword n_elem = A.get_n_elem(); for(uword i=0; i<n_elem; ++i) { out_mem[i] = A[i] + k; } } else { for(uword col=0; col < n_cols; ++col) for(uword row=0; row < n_rows; ++row) { *out_mem = A.at(row,col) + k; ++out_mem; } } } template<typename T1> inline void op_cx_scalar_minus_pre::apply ( Mat< typename std::complex<typename T1::pod_type> >& out, const mtOp<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_minus_pre>& X ) { arma_extra_debug_sigprint(); typedef typename std::complex<typename T1::pod_type> eT; const Proxy<T1> A(X.m); const uword n_rows = A.get_n_rows(); const uword n_cols = A.get_n_cols(); out.set_size(n_rows, n_cols); const eT k = X.aux_out_eT; eT* out_mem = out.memptr(); if(Proxy<T1>::prefer_at_accessor == false) { const uword n_elem = A.get_n_elem(); for(uword i=0; i<n_elem; ++i) { out_mem[i] = k - A[i]; } } else { for(uword col=0; col < n_cols; ++col) for(uword row=0; row < n_rows; ++row) { *out_mem = k - A.at(row,col); ++out_mem; } } } template<typename T1> inline void op_cx_scalar_minus_post::apply ( Mat< typename std::complex<typename T1::pod_type> >& out, const mtOp<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_minus_post>& X ) { arma_extra_debug_sigprint(); typedef typename std::complex<typename T1::pod_type> eT; const Proxy<T1> A(X.m); const uword n_rows = A.get_n_rows(); const uword n_cols = A.get_n_cols(); out.set_size(n_rows, n_cols); const eT k = X.aux_out_eT; eT* out_mem = out.memptr(); if(Proxy<T1>::prefer_at_accessor == false) { const uword n_elem = A.get_n_elem(); for(uword i=0; i<n_elem; ++i) { out_mem[i] = A[i] - k; } } else { for(uword col=0; col < n_cols; ++col) for(uword row=0; row < n_rows; ++row) { *out_mem = A.at(row,col) - k; ++out_mem; } } } template<typename T1> inline void op_cx_scalar_div_pre::apply ( Mat< typename std::complex<typename T1::pod_type> >& out, const mtOp<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_div_pre>& X ) { arma_extra_debug_sigprint(); typedef typename std::complex<typename T1::pod_type> eT; const Proxy<T1> A(X.m); const uword n_rows = A.get_n_rows(); const uword n_cols = A.get_n_cols(); out.set_size(n_rows, n_cols); const eT k = X.aux_out_eT; eT* out_mem = out.memptr(); if(Proxy<T1>::prefer_at_accessor == false) { const uword n_elem = A.get_n_elem(); for(uword i=0; i<n_elem; ++i) { out_mem[i] = k / A[i]; } } else { for(uword col=0; col < n_cols; ++col) for(uword row=0; row < n_rows; ++row) { *out_mem = k / A.at(row,col); ++out_mem; } } } template<typename T1> inline void op_cx_scalar_div_post::apply ( Mat< typename std::complex<typename T1::pod_type> >& out, const mtOp<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_div_post>& X ) { arma_extra_debug_sigprint(); typedef typename std::complex<typename T1::pod_type> eT; const Proxy<T1> A(X.m); const uword n_rows = A.get_n_rows(); const uword n_cols = A.get_n_cols(); out.set_size(n_rows, n_cols); const eT k = X.aux_out_eT; eT* out_mem = out.memptr(); if(Proxy<T1>::prefer_at_accessor == false) { const uword n_elem = A.get_n_elem(); for(uword i=0; i<n_elem; ++i) { out_mem[i] = A[i] / k; } } else { for(uword col=0; col < n_cols; ++col) for(uword row=0; row < n_rows; ++row) { *out_mem = A.at(row,col) / k; ++out_mem; } } } // // // template<typename T1> inline void op_cx_scalar_times::apply ( Cube< typename std::complex<typename T1::pod_type> >& out, const mtOpCube<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_times>& X ) { arma_extra_debug_sigprint(); typedef typename std::complex<typename T1::pod_type> eT; const ProxyCube<T1> A(X.m); out.set_size(A.get_n_rows(), A.get_n_cols(), A.get_n_slices()); const eT k = X.aux_out_eT; const uword n_elem = out.n_elem; eT* out_mem = out.memptr(); // TODO: implement handling for ProxyCube<T1>::prefer_at_accessor == true for(uword i=0; i<n_elem; ++i) { out_mem[i] = A[i] * k; } } template<typename T1> inline void op_cx_scalar_plus::apply ( Cube< typename std::complex<typename T1::pod_type> >& out, const mtOpCube<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_plus>& X ) { arma_extra_debug_sigprint(); typedef typename std::complex<typename T1::pod_type> eT; const ProxyCube<T1> A(X.m); out.set_size(A.get_n_rows(), A.get_n_cols(), A.get_n_slices()); const eT k = X.aux_out_eT; const uword n_elem = out.n_elem; eT* out_mem = out.memptr(); for(uword i=0; i<n_elem; ++i) { out_mem[i] = A[i] + k; } } template<typename T1> inline void op_cx_scalar_minus_pre::apply ( Cube< typename std::complex<typename T1::pod_type> >& out, const mtOpCube<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_minus_pre>& X ) { arma_extra_debug_sigprint(); typedef typename std::complex<typename T1::pod_type> eT; const ProxyCube<T1> A(X.m); out.set_size(A.get_n_rows(), A.get_n_cols(), A.get_n_slices()); const eT k = X.aux_out_eT; const uword n_elem = out.n_elem; eT* out_mem = out.memptr(); for(uword i=0; i<n_elem; ++i) { out_mem[i] = k - A[i]; } } template<typename T1> inline void op_cx_scalar_minus_post::apply ( Cube< typename std::complex<typename T1::pod_type> >& out, const mtOpCube<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_minus_post>& X ) { arma_extra_debug_sigprint(); typedef typename std::complex<typename T1::pod_type> eT; const ProxyCube<T1> A(X.m); out.set_size(A.get_n_rows(), A.get_n_cols(), A.get_n_slices()); const eT k = X.aux_out_eT; const uword n_elem = out.n_elem; eT* out_mem = out.memptr(); for(uword i=0; i<n_elem; ++i) { out_mem[i] = A[i] - k; } } template<typename T1> inline void op_cx_scalar_div_pre::apply ( Cube< typename std::complex<typename T1::pod_type> >& out, const mtOpCube<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_div_pre>& X ) { arma_extra_debug_sigprint(); typedef typename std::complex<typename T1::pod_type> eT; const ProxyCube<T1> A(X.m); out.set_size(A.get_n_rows(), A.get_n_cols(), A.get_n_slices()); const eT k = X.aux_out_eT; const uword n_elem = out.n_elem; eT* out_mem = out.memptr(); for(uword i=0; i<n_elem; ++i) { out_mem[i] = k / A[i]; } } template<typename T1> inline void op_cx_scalar_div_post::apply ( Cube< typename std::complex<typename T1::pod_type> >& out, const mtOpCube<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_div_post>& X ) { arma_extra_debug_sigprint(); typedef typename std::complex<typename T1::pod_type> eT; const ProxyCube<T1> A(X.m); out.set_size(A.get_n_rows(), A.get_n_cols(), A.get_n_slices()); const eT k = X.aux_out_eT; const uword n_elem = out.n_elem; eT* out_mem = out.memptr(); for(uword i=0; i<n_elem; ++i) { out_mem[i] = A[i] / k; } } //! @}