view armadillo-3.900.4/include/armadillo_bits/op_cx_scalar_meat.hpp @ 84:55a047986812 tip

Update library URI so as not to be document-local
author Chris Cannam
date Wed, 22 Apr 2020 14:21:57 +0100
parents 1ec0e2823891
children
line wrap: on
line source
// Copyright (C) 2008-2013 NICTA (www.nicta.com.au)
// Copyright (C) 2008-2013 Conrad Sanderson
// 
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.


//! \addtogroup op_cx_scalar
//! @{



template<typename T1>
inline
void
op_cx_scalar_times::apply
  (
        Mat< typename std::complex<typename T1::pod_type> >& out,
  const mtOp<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_times>& X
  )
  {
  arma_extra_debug_sigprint();
  
  typedef typename std::complex<typename T1::pod_type> eT;
  
  const Proxy<T1> A(X.m);
  
  const uword n_rows = A.get_n_rows();
  const uword n_cols = A.get_n_cols();
  
  out.set_size(n_rows, n_cols);
  
  const eT  k       = X.aux_out_eT;
        eT* out_mem = out.memptr();
  
  if(Proxy<T1>::prefer_at_accessor == false)
    {
    const uword n_elem = A.get_n_elem();
  
    for(uword i=0; i<n_elem; ++i)
      {
      out_mem[i] = A[i] * k;
      }
    }
  else
    {
    for(uword col=0; col < n_cols; ++col)
    for(uword row=0; row < n_rows; ++row)
      {
      *out_mem = A.at(row,col) * k;  ++out_mem;
      }
    }
  }



template<typename T1>
inline
void
op_cx_scalar_plus::apply
  (
        Mat< typename std::complex<typename T1::pod_type> >& out,
  const mtOp<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_plus>& X
  )
  {
  arma_extra_debug_sigprint();
  
  typedef typename std::complex<typename T1::pod_type> eT;
  
  const Proxy<T1> A(X.m);
  
  const uword n_rows = A.get_n_rows();
  const uword n_cols = A.get_n_cols();
  
  out.set_size(n_rows, n_cols);
  
  const eT  k       = X.aux_out_eT;
        eT* out_mem = out.memptr();
  
  if(Proxy<T1>::prefer_at_accessor == false)
    {
    const uword n_elem = A.get_n_elem();
  
    for(uword i=0; i<n_elem; ++i)
      {
      out_mem[i] = A[i] + k;
      }
    }
  else
    {
    for(uword col=0; col < n_cols; ++col)
    for(uword row=0; row < n_rows; ++row)
      {
      *out_mem = A.at(row,col) + k;  ++out_mem;
      }
    }
  }



template<typename T1>
inline
void
op_cx_scalar_minus_pre::apply
  (
        Mat< typename std::complex<typename T1::pod_type> >& out,
  const mtOp<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_minus_pre>& X
  )
  {
  arma_extra_debug_sigprint();
  
  typedef typename std::complex<typename T1::pod_type> eT;
  
  const Proxy<T1> A(X.m);
  
  const uword n_rows = A.get_n_rows();
  const uword n_cols = A.get_n_cols();
  
  out.set_size(n_rows, n_cols);
  
  const eT  k       = X.aux_out_eT;
        eT* out_mem = out.memptr();
  
  if(Proxy<T1>::prefer_at_accessor == false)
    {
    const uword n_elem = A.get_n_elem();
  
    for(uword i=0; i<n_elem; ++i)
      {
      out_mem[i] = k - A[i];
      }
    }
  else
    {
    for(uword col=0; col < n_cols; ++col)
    for(uword row=0; row < n_rows; ++row)
      {
      *out_mem = k - A.at(row,col);  ++out_mem;
      }
    }
  }



template<typename T1>
inline
void
op_cx_scalar_minus_post::apply
  (
        Mat< typename std::complex<typename T1::pod_type> >& out,
  const mtOp<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_minus_post>& X
  )
  {
  arma_extra_debug_sigprint();
  
  typedef typename std::complex<typename T1::pod_type> eT;
  
  const Proxy<T1> A(X.m);
  
  const uword n_rows = A.get_n_rows();
  const uword n_cols = A.get_n_cols();
  
  out.set_size(n_rows, n_cols);
  
  const eT  k       = X.aux_out_eT;
        eT* out_mem = out.memptr();
  
  if(Proxy<T1>::prefer_at_accessor == false)
    {
    const uword n_elem = A.get_n_elem();
  
    for(uword i=0; i<n_elem; ++i)
      {
      out_mem[i] = A[i] - k;
      }
    }
  else
    {
    for(uword col=0; col < n_cols; ++col)
    for(uword row=0; row < n_rows; ++row)
      {
      *out_mem = A.at(row,col) - k;  ++out_mem;
      }
    }
  }



template<typename T1>
inline
void
op_cx_scalar_div_pre::apply
  (
        Mat< typename std::complex<typename T1::pod_type> >& out,
  const mtOp<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_div_pre>& X
  )
  {
  arma_extra_debug_sigprint();
  
  typedef typename std::complex<typename T1::pod_type> eT;
  
  const Proxy<T1> A(X.m);
  
  const uword n_rows = A.get_n_rows();
  const uword n_cols = A.get_n_cols();
  
  out.set_size(n_rows, n_cols);
  
  const eT  k       = X.aux_out_eT;
        eT* out_mem = out.memptr();
  
  if(Proxy<T1>::prefer_at_accessor == false)
    {
    const uword n_elem = A.get_n_elem();
  
    for(uword i=0; i<n_elem; ++i)
      {
      out_mem[i] = k / A[i];
      }
    }
  else
    {
    for(uword col=0; col < n_cols; ++col)
    for(uword row=0; row < n_rows; ++row)
      {
      *out_mem = k / A.at(row,col);  ++out_mem;
      }
    }
  }



template<typename T1>
inline
void
op_cx_scalar_div_post::apply
  (
        Mat< typename std::complex<typename T1::pod_type> >& out,
  const mtOp<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_div_post>& X
  )
  {
  arma_extra_debug_sigprint();
  
  typedef typename std::complex<typename T1::pod_type> eT;
  
  const Proxy<T1> A(X.m);
  
  const uword n_rows = A.get_n_rows();
  const uword n_cols = A.get_n_cols();
  
  out.set_size(n_rows, n_cols);
  
  const eT  k       = X.aux_out_eT;
        eT* out_mem = out.memptr();
  
  if(Proxy<T1>::prefer_at_accessor == false)
    {
    const uword n_elem = A.get_n_elem();
  
    for(uword i=0; i<n_elem; ++i)
      {
      out_mem[i] = A[i] / k;
      }
    }
  else
    {
    for(uword col=0; col < n_cols; ++col)
    for(uword row=0; row < n_rows; ++row)
      {
      *out_mem = A.at(row,col) / k;  ++out_mem;
      }
    }
  }



//
//
//



template<typename T1>
inline
void
op_cx_scalar_times::apply
  (
           Cube< typename std::complex<typename T1::pod_type> >& out,
  const mtOpCube<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_times>& X
  )
  {
  arma_extra_debug_sigprint();
  
  typedef typename std::complex<typename T1::pod_type> eT;
  
  const ProxyCube<T1> A(X.m);
  
  out.set_size(A.get_n_rows(), A.get_n_cols(), A.get_n_slices());
  
  const eT    k       = X.aux_out_eT;
  const uword n_elem  = out.n_elem;
        eT*   out_mem = out.memptr();
  
  // TODO: implement handling for ProxyCube<T1>::prefer_at_accessor == true
  for(uword i=0; i<n_elem; ++i)
    {
    out_mem[i] = A[i] * k;
    }
  }



template<typename T1>
inline
void
op_cx_scalar_plus::apply
  (
           Cube< typename std::complex<typename T1::pod_type> >& out,
  const mtOpCube<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_plus>& X
  )
  {
  arma_extra_debug_sigprint();
  
  typedef typename std::complex<typename T1::pod_type> eT;
  
  const ProxyCube<T1> A(X.m);
  
  out.set_size(A.get_n_rows(), A.get_n_cols(), A.get_n_slices());
  
  const eT    k       = X.aux_out_eT;
  const uword n_elem  = out.n_elem;
        eT*   out_mem = out.memptr();
  
  for(uword i=0; i<n_elem; ++i)
    {
    out_mem[i] = A[i] + k;
    }
  }



template<typename T1>
inline
void
op_cx_scalar_minus_pre::apply
  (
           Cube< typename std::complex<typename T1::pod_type> >& out,
  const mtOpCube<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_minus_pre>& X
  )
  {
  arma_extra_debug_sigprint();
  
  typedef typename std::complex<typename T1::pod_type> eT;
  
  const ProxyCube<T1> A(X.m);
  
  out.set_size(A.get_n_rows(), A.get_n_cols(), A.get_n_slices());
  
  const eT    k       = X.aux_out_eT;
  const uword n_elem  = out.n_elem;
        eT*   out_mem = out.memptr();
  
  for(uword i=0; i<n_elem; ++i)
    {
    out_mem[i] = k - A[i];
    }
  }



template<typename T1>
inline
void
op_cx_scalar_minus_post::apply
  (
           Cube< typename std::complex<typename T1::pod_type> >& out,
  const mtOpCube<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_minus_post>& X
  )
  {
  arma_extra_debug_sigprint();
  
  typedef typename std::complex<typename T1::pod_type> eT;
  
  const ProxyCube<T1> A(X.m);
  
  out.set_size(A.get_n_rows(), A.get_n_cols(), A.get_n_slices());
  
  const eT    k       = X.aux_out_eT;
  const uword n_elem  = out.n_elem;
        eT*   out_mem = out.memptr();
  
  for(uword i=0; i<n_elem; ++i)
    {
    out_mem[i] = A[i] - k;
    }
  }



template<typename T1>
inline
void
op_cx_scalar_div_pre::apply
  (
           Cube< typename std::complex<typename T1::pod_type> >& out,
  const mtOpCube<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_div_pre>& X
  )
  {
  arma_extra_debug_sigprint();
  
  typedef typename std::complex<typename T1::pod_type> eT;
  
  const ProxyCube<T1> A(X.m);
  
  out.set_size(A.get_n_rows(), A.get_n_cols(), A.get_n_slices());
  
  const eT    k       = X.aux_out_eT;
  const uword n_elem  = out.n_elem;
        eT*   out_mem = out.memptr();
  
  for(uword i=0; i<n_elem; ++i)
    {
    out_mem[i] = k / A[i];
    }
  }



template<typename T1>
inline
void
op_cx_scalar_div_post::apply
  (
           Cube< typename std::complex<typename T1::pod_type> >& out,
  const mtOpCube<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_div_post>& X
  )
  {
  arma_extra_debug_sigprint();
  
  typedef typename std::complex<typename T1::pod_type> eT;
  
  const ProxyCube<T1> A(X.m);
  
  out.set_size(A.get_n_rows(), A.get_n_cols(), A.get_n_slices());
  
  const eT    k       = X.aux_out_eT;
  const uword n_elem  = out.n_elem;
        eT*   out_mem = out.memptr();
  
  for(uword i=0; i<n_elem; ++i)
    {
    out_mem[i] = A[i] / k;
    }
  }



//! @}