Mercurial > hg > segmenter-vamp-plugin
view armadillo-3.900.4/include/armadillo_bits/gemm_mixed.hpp @ 84:55a047986812 tip
Update library URI so as not to be document-local
author | Chris Cannam |
---|---|
date | Wed, 22 Apr 2020 14:21:57 +0100 |
parents | 1ec0e2823891 |
children |
line wrap: on
line source
// Copyright (C) 2008-2011 NICTA (www.nicta.com.au) // Copyright (C) 2008-2011 Conrad Sanderson // // This Source Code Form is subject to the terms of the Mozilla Public // License, v. 2.0. If a copy of the MPL was not distributed with this // file, You can obtain one at http://mozilla.org/MPL/2.0/. //! \addtogroup gemm_mixed //! @{ //! \brief //! Matrix multplication where the matrices have differing element types. //! Uses caching for speedup. //! Matrix 'C' is assumed to have been set to the correct size (i.e. taking into account transposes) template<const bool do_trans_A=false, const bool do_trans_B=false, const bool use_alpha=false, const bool use_beta=false> class gemm_mixed_large { public: template<typename out_eT, typename in_eT1, typename in_eT2> arma_hot inline static void apply ( Mat<out_eT>& C, const Mat<in_eT1>& A, const Mat<in_eT2>& B, const out_eT alpha = out_eT(1), const out_eT beta = out_eT(0) ) { arma_extra_debug_sigprint(); const uword A_n_rows = A.n_rows; const uword A_n_cols = A.n_cols; const uword B_n_rows = B.n_rows; const uword B_n_cols = B.n_cols; if( (do_trans_A == false) && (do_trans_B == false) ) { podarray<in_eT1> tmp(A_n_cols); in_eT1* A_rowdata = tmp.memptr(); for(uword row_A=0; row_A < A_n_rows; ++row_A) { tmp.copy_row(A, row_A); for(uword col_B=0; col_B < B_n_cols; ++col_B) { const in_eT2* B_coldata = B.colptr(col_B); out_eT acc = out_eT(0); for(uword i=0; i < B_n_rows; ++i) { acc += upgrade_val<in_eT1,in_eT2>::apply(A_rowdata[i]) * upgrade_val<in_eT1,in_eT2>::apply(B_coldata[i]); } if( (use_alpha == false) && (use_beta == false) ) { C.at(row_A,col_B) = acc; } else if( (use_alpha == true) && (use_beta == false) ) { C.at(row_A,col_B) = alpha * acc; } else if( (use_alpha == false) && (use_beta == true) ) { C.at(row_A,col_B) = acc + beta*C.at(row_A,col_B); } else if( (use_alpha == true) && (use_beta == true) ) { C.at(row_A,col_B) = alpha*acc + beta*C.at(row_A,col_B); } } } } else if( (do_trans_A == true) && (do_trans_B == false) ) { for(uword col_A=0; col_A < A_n_cols; ++col_A) { // col_A is interpreted as row_A when storing the results in matrix C const in_eT1* A_coldata = A.colptr(col_A); for(uword col_B=0; col_B < B_n_cols; ++col_B) { const in_eT2* B_coldata = B.colptr(col_B); out_eT acc = out_eT(0); for(uword i=0; i < B_n_rows; ++i) { acc += upgrade_val<in_eT1,in_eT2>::apply(A_coldata[i]) * upgrade_val<in_eT1,in_eT2>::apply(B_coldata[i]); } if( (use_alpha == false) && (use_beta == false) ) { C.at(col_A,col_B) = acc; } else if( (use_alpha == true) && (use_beta == false) ) { C.at(col_A,col_B) = alpha * acc; } else if( (use_alpha == false) && (use_beta == true) ) { C.at(col_A,col_B) = acc + beta*C.at(col_A,col_B); } else if( (use_alpha == true) && (use_beta == true) ) { C.at(col_A,col_B) = alpha*acc + beta*C.at(col_A,col_B); } } } } else if( (do_trans_A == false) && (do_trans_B == true) ) { Mat<in_eT2> B_tmp; op_strans::apply_noalias(B_tmp, B); gemm_mixed_large<false, false, use_alpha, use_beta>::apply(C, A, B_tmp, alpha, beta); } else if( (do_trans_A == true) && (do_trans_B == true) ) { // mat B_tmp = trans(B); // dgemm_arma<true, false, use_alpha, use_beta>::apply(C, A, B_tmp, alpha, beta); // By using the trans(A)*trans(B) = trans(B*A) equivalency, // transpose operations are not needed podarray<in_eT2> tmp(B_n_cols); in_eT2* B_rowdata = tmp.memptr(); for(uword row_B=0; row_B < B_n_rows; ++row_B) { tmp.copy_row(B, row_B); for(uword col_A=0; col_A < A_n_cols; ++col_A) { const in_eT1* A_coldata = A.colptr(col_A); out_eT acc = out_eT(0); for(uword i=0; i < A_n_rows; ++i) { acc += upgrade_val<in_eT1,in_eT2>::apply(B_rowdata[i]) * upgrade_val<in_eT1,in_eT2>::apply(A_coldata[i]); } if( (use_alpha == false) && (use_beta == false) ) { C.at(col_A,row_B) = acc; } else if( (use_alpha == true) && (use_beta == false) ) { C.at(col_A,row_B) = alpha * acc; } else if( (use_alpha == false) && (use_beta == true) ) { C.at(col_A,row_B) = acc + beta*C.at(col_A,row_B); } else if( (use_alpha == true) && (use_beta == true) ) { C.at(col_A,row_B) = alpha*acc + beta*C.at(col_A,row_B); } } } } } }; //! Matrix multplication where the matrices have different element types. //! Simple version (no caching). //! Matrix 'C' is assumed to have been set to the correct size (i.e. taking into account transposes) template<const bool do_trans_A=false, const bool do_trans_B=false, const bool use_alpha=false, const bool use_beta=false> class gemm_mixed_small { public: template<typename out_eT, typename in_eT1, typename in_eT2> arma_hot inline static void apply ( Mat<out_eT>& C, const Mat<in_eT1>& A, const Mat<in_eT2>& B, const out_eT alpha = out_eT(1), const out_eT beta = out_eT(0) ) { arma_extra_debug_sigprint(); const uword A_n_rows = A.n_rows; const uword A_n_cols = A.n_cols; const uword B_n_rows = B.n_rows; const uword B_n_cols = B.n_cols; if( (do_trans_A == false) && (do_trans_B == false) ) { for(uword row_A = 0; row_A < A_n_rows; ++row_A) { for(uword col_B = 0; col_B < B_n_cols; ++col_B) { const in_eT2* B_coldata = B.colptr(col_B); out_eT acc = out_eT(0); for(uword i = 0; i < B_n_rows; ++i) { const out_eT val1 = upgrade_val<in_eT1,in_eT2>::apply(A.at(row_A,i)); const out_eT val2 = upgrade_val<in_eT1,in_eT2>::apply(B_coldata[i]); acc += val1 * val2; //acc += upgrade_val<in_eT1,in_eT2>::apply(A.at(row_A,i)) * upgrade_val<in_eT1,in_eT2>::apply(B_coldata[i]); } if( (use_alpha == false) && (use_beta == false) ) { C.at(row_A,col_B) = acc; } else if( (use_alpha == true) && (use_beta == false) ) { C.at(row_A,col_B) = alpha * acc; } else if( (use_alpha == false) && (use_beta == true) ) { C.at(row_A,col_B) = acc + beta*C.at(row_A,col_B); } else if( (use_alpha == true) && (use_beta == true) ) { C.at(row_A,col_B) = alpha*acc + beta*C.at(row_A,col_B); } } } } else if( (do_trans_A == true) && (do_trans_B == false) ) { for(uword col_A=0; col_A < A_n_cols; ++col_A) { // col_A is interpreted as row_A when storing the results in matrix C const in_eT1* A_coldata = A.colptr(col_A); for(uword col_B=0; col_B < B_n_cols; ++col_B) { const in_eT2* B_coldata = B.colptr(col_B); out_eT acc = out_eT(0); for(uword i=0; i < B_n_rows; ++i) { acc += upgrade_val<in_eT1,in_eT2>::apply(A_coldata[i]) * upgrade_val<in_eT1,in_eT2>::apply(B_coldata[i]); } if( (use_alpha == false) && (use_beta == false) ) { C.at(col_A,col_B) = acc; } else if( (use_alpha == true) && (use_beta == false) ) { C.at(col_A,col_B) = alpha * acc; } else if( (use_alpha == false) && (use_beta == true) ) { C.at(col_A,col_B) = acc + beta*C.at(col_A,col_B); } else if( (use_alpha == true) && (use_beta == true) ) { C.at(col_A,col_B) = alpha*acc + beta*C.at(col_A,col_B); } } } } else if( (do_trans_A == false) && (do_trans_B == true) ) { for(uword row_A = 0; row_A < A_n_rows; ++row_A) { for(uword row_B = 0; row_B < B_n_rows; ++row_B) { out_eT acc = out_eT(0); for(uword i = 0; i < B_n_cols; ++i) { acc += upgrade_val<in_eT1,in_eT2>::apply(A.at(row_A,i)) * upgrade_val<in_eT1,in_eT2>::apply(B.at(row_B,i)); } if( (use_alpha == false) && (use_beta == false) ) { C.at(row_A,row_B) = acc; } else if( (use_alpha == true) && (use_beta == false) ) { C.at(row_A,row_B) = alpha * acc; } else if( (use_alpha == false) && (use_beta == true) ) { C.at(row_A,row_B) = acc + beta*C.at(row_A,row_B); } else if( (use_alpha == true) && (use_beta == true) ) { C.at(row_A,row_B) = alpha*acc + beta*C.at(row_A,row_B); } } } } else if( (do_trans_A == true) && (do_trans_B == true) ) { for(uword row_B=0; row_B < B_n_rows; ++row_B) { for(uword col_A=0; col_A < A_n_cols; ++col_A) { const in_eT1* A_coldata = A.colptr(col_A); out_eT acc = out_eT(0); for(uword i=0; i < A_n_rows; ++i) { acc += upgrade_val<in_eT1,in_eT2>::apply(B.at(row_B,i)) * upgrade_val<in_eT1,in_eT2>::apply(A_coldata[i]); } if( (use_alpha == false) && (use_beta == false) ) { C.at(col_A,row_B) = acc; } else if( (use_alpha == true) && (use_beta == false) ) { C.at(col_A,row_B) = alpha * acc; } else if( (use_alpha == false) && (use_beta == true) ) { C.at(col_A,row_B) = acc + beta*C.at(col_A,row_B); } else if( (use_alpha == true) && (use_beta == true) ) { C.at(col_A,row_B) = alpha*acc + beta*C.at(col_A,row_B); } } } } } }; //! \brief //! Matrix multplication where the matrices have differing element types. template<const bool do_trans_A=false, const bool do_trans_B=false, const bool use_alpha=false, const bool use_beta=false> class gemm_mixed { public: //! immediate multiplication of matrices A and B, storing the result in C template<typename out_eT, typename in_eT1, typename in_eT2> inline static void apply ( Mat<out_eT>& C, const Mat<in_eT1>& A, const Mat<in_eT2>& B, const out_eT alpha = out_eT(1), const out_eT beta = out_eT(0) ) { arma_extra_debug_sigprint(); Mat<in_eT1> tmp_A; Mat<in_eT2> tmp_B; const bool predo_trans_A = ( (do_trans_A == true) && (is_complex<in_eT1>::value == true) ); const bool predo_trans_B = ( (do_trans_B == true) && (is_complex<in_eT2>::value == true) ); if(do_trans_A) { op_htrans::apply_noalias(tmp_A, A); } if(do_trans_B) { op_htrans::apply_noalias(tmp_B, B); } const Mat<in_eT1>& AA = (predo_trans_A == false) ? A : tmp_A; const Mat<in_eT2>& BB = (predo_trans_B == false) ? B : tmp_B; if( (AA.n_elem <= 64u) && (BB.n_elem <= 64u) ) { gemm_mixed_small<((predo_trans_A) ? false : do_trans_A), ((predo_trans_B) ? false : do_trans_B), use_alpha, use_beta>::apply(C, AA, BB, alpha, beta); } else { gemm_mixed_large<((predo_trans_A) ? false : do_trans_A), ((predo_trans_B) ? false : do_trans_B), use_alpha, use_beta>::apply(C, AA, BB, alpha, beta); } } }; //! @}