Mercurial > hg > segmenter-vamp-plugin
view armadillo-3.900.4/include/armadillo_bits/fn_norm.hpp @ 84:55a047986812 tip
Update library URI so as not to be document-local
author | Chris Cannam |
---|---|
date | Wed, 22 Apr 2020 14:21:57 +0100 |
parents | 1ec0e2823891 |
children |
line wrap: on
line source
// Copyright (C) 2008-2012 NICTA (www.nicta.com.au) // Copyright (C) 2008-2012 Conrad Sanderson // // This Source Code Form is subject to the terms of the Mozilla Public // License, v. 2.0. If a copy of the MPL was not distributed with this // file, You can obtain one at http://mozilla.org/MPL/2.0/. //! \addtogroup fn_norm //! @{ template<typename T1> arma_hot inline typename T1::pod_type arma_vec_norm_1(const Proxy<T1>& P) { arma_extra_debug_sigprint(); typedef typename T1::pod_type T; T acc = T(0); if(Proxy<T1>::prefer_at_accessor == false) { typename Proxy<T1>::ea_type A = P.get_ea(); const uword N = P.get_n_elem(); T acc1 = T(0); T acc2 = T(0); uword i,j; for(i=0, j=1; j<N; i+=2, j+=2) { acc1 += std::abs(A[i]); acc2 += std::abs(A[j]); } if(i < N) { acc1 += std::abs(A[i]); } acc = acc1 + acc2; } else { const uword n_rows = P.get_n_rows(); const uword n_cols = P.get_n_cols(); if(n_rows == 1) { for(uword col=0; col<n_cols; ++col) { acc += std::abs(P.at(0,col)); } } else { for(uword col=0; col<n_cols; ++col) { uword i,j; for(i=0, j=1; j<n_rows; i+=2, j+=2) { acc += std::abs(P.at(i,col)); acc += std::abs(P.at(j,col)); } if(i < n_rows) { acc += std::abs(P.at(i,col)); } } } } return acc; } template<typename T1> arma_hot inline typename T1::pod_type arma_vec_norm_2 ( const Proxy<T1>& P, const typename arma_not_cx<typename T1::elem_type>::result* junk = 0 ) { arma_extra_debug_sigprint(); arma_ignore(junk); typedef typename T1::pod_type T; T acc = T(0); if(Proxy<T1>::prefer_at_accessor == false) { typename Proxy<T1>::ea_type A = P.get_ea(); const uword N = P.get_n_elem(); T acc1 = T(0); T acc2 = T(0); uword i,j; for(i=0, j=1; j<N; i+=2, j+=2) { const T tmp_i = A[i]; const T tmp_j = A[j]; acc1 += tmp_i * tmp_i; acc2 += tmp_j * tmp_j; } if(i < N) { const T tmp_i = A[i]; acc1 += tmp_i * tmp_i; } acc = acc1 + acc2; } else { const uword n_rows = P.get_n_rows(); const uword n_cols = P.get_n_cols(); if(n_rows == 1) { for(uword col=0; col<n_cols; ++col) { const T tmp = P.at(0,col); acc += tmp * tmp; } } else { for(uword col=0; col<n_cols; ++col) { uword i,j; for(i=0, j=1; j<n_rows; i+=2, j+=2) { const T tmp_i = P.at(i,col); const T tmp_j = P.at(j,col); acc += tmp_i * tmp_i; acc += tmp_j * tmp_j; } if(i < n_rows) { const T tmp_i = P.at(i,col); acc += tmp_i * tmp_i; } } } } return std::sqrt(acc); } template<typename T1> arma_hot inline typename T1::pod_type arma_vec_norm_2 ( const Proxy<T1>& P, const typename arma_cx_only<typename T1::elem_type>::result* junk = 0 ) { arma_extra_debug_sigprint(); arma_ignore(junk); typedef typename T1::pod_type T; T acc = T(0); if(Proxy<T1>::prefer_at_accessor == false) { typename Proxy<T1>::ea_type A = P.get_ea(); const uword N = P.get_n_elem(); for(uword i=0; i<N; ++i) { const T tmp = std::abs(A[i]); acc += tmp*tmp; } } else { const uword n_rows = P.get_n_rows(); const uword n_cols = P.get_n_cols(); if(n_rows == 1) { for(uword col=0; col<n_cols; ++col) { const T tmp = std::abs(P.at(0,col)); acc += tmp*tmp; } } else { for(uword col=0; col<n_cols; ++col) for(uword row=0; row<n_rows; ++row) { const T tmp = std::abs(P.at(row,col)); acc += tmp*tmp; } } } return std::sqrt(acc); } template<typename T1> arma_hot inline typename T1::pod_type arma_vec_norm_k ( const Proxy<T1>& P, const int k ) { arma_extra_debug_sigprint(); typedef typename T1::pod_type T; T acc = T(0); if(Proxy<T1>::prefer_at_accessor == false) { typename Proxy<T1>::ea_type A = P.get_ea(); const uword N = P.get_n_elem(); uword i,j; for(i=0, j=1; j<N; i+=2, j+=2) { acc += std::pow(std::abs(A[i]), k); acc += std::pow(std::abs(A[j]), k); } if(i < N) { acc += std::pow(std::abs(A[i]), k); } } else { const uword n_rows = P.get_n_rows(); const uword n_cols = P.get_n_cols(); if(n_rows != 1) { for(uword col=0; col < n_cols; ++col) for(uword row=0; row < n_rows; ++row) { acc += std::pow(std::abs(P.at(row,col)), k); } } else { for(uword col=0; col < n_cols; ++col) { acc += std::pow(std::abs(P.at(0,col)), k); } } } return std::pow(acc, T(1)/T(k)); } template<typename T1> arma_hot inline typename T1::pod_type arma_vec_norm_max(const Proxy<T1>& P) { arma_extra_debug_sigprint(); typedef typename T1::pod_type T; const uword N = P.get_n_elem(); T max_val = (N != 1) ? priv::most_neg<T>() : std::abs(P[0]); if(Proxy<T1>::prefer_at_accessor == false) { typename Proxy<T1>::ea_type A = P.get_ea(); uword i,j; for(i=0, j=1; j<N; i+=2, j+=2) { const T tmp_i = std::abs(A[i]); const T tmp_j = std::abs(A[j]); if(max_val < tmp_i) { max_val = tmp_i; } if(max_val < tmp_j) { max_val = tmp_j; } } if(i < N) { const T tmp_i = std::abs(A[i]); if(max_val < tmp_i) { max_val = tmp_i; } } } else { const uword n_rows = P.get_n_rows(); const uword n_cols = P.get_n_cols(); if(n_rows != 1) { for(uword col=0; col < n_cols; ++col) for(uword row=0; row < n_rows; ++row) { const T tmp = std::abs(P.at(row,col)); if(max_val < tmp) { max_val = tmp; } } } else { for(uword col=0; col < n_cols; ++col) { const T tmp = std::abs(P.at(0,col)); if(max_val < tmp) { max_val = tmp; } } } } return max_val; } template<typename T1> arma_hot inline typename T1::pod_type arma_vec_norm_min(const Proxy<T1>& P) { arma_extra_debug_sigprint(); typedef typename T1::pod_type T; const uword N = P.get_n_elem(); T min_val = (N != 1) ? priv::most_pos<T>() : std::abs(P[0]); if(Proxy<T1>::prefer_at_accessor == false) { typename Proxy<T1>::ea_type A = P.get_ea(); uword i,j; for(i=0, j=1; j<N; i+=2, j+=2) { const T tmp_i = std::abs(A[i]); const T tmp_j = std::abs(A[j]); if(min_val > tmp_i) { min_val = tmp_i; } if(min_val > tmp_j) { min_val = tmp_j; } } if(i < N) { const T tmp_i = std::abs(A[i]); if(min_val > tmp_i) { min_val = tmp_i; } } } else { const uword n_rows = P.get_n_rows(); const uword n_cols = P.get_n_cols(); if(n_rows != 1) { for(uword col=0; col < n_cols; ++col) for(uword row=0; row < n_rows; ++row) { const T tmp = std::abs(P.at(row,col)); if(min_val > tmp) { min_val = tmp; } } } else { for(uword col=0; col < n_cols; ++col) { const T tmp = std::abs(P.at(0,col)); if(min_val > tmp) { min_val = tmp; } } } } return min_val; } template<typename T1> inline typename T1::pod_type arma_mat_norm_1(const Proxy<T1>& P) { arma_extra_debug_sigprint(); // TODO: this can be sped up with a dedicated implementation return as_scalar( max( sum(abs(P.Q), 0), 1) ); } template<typename T1> inline typename T1::pod_type arma_mat_norm_2(const Proxy<T1>& P) { arma_extra_debug_sigprint(); typedef typename T1::pod_type T; // TODO: is the SVD based approach only valid for square matrices? Col<T> S; svd(S, P.Q); return (S.n_elem > 0) ? max(S) : T(0); } template<typename T1> inline typename T1::pod_type arma_mat_norm_inf(const Proxy<T1>& P) { arma_extra_debug_sigprint(); // TODO: this can be sped up with a dedicated implementation return as_scalar( max( sum(abs(P.Q), 1), 0) ); } template<typename T1> inline arma_warn_unused typename enable_if2< is_arma_type<T1>::value, typename T1::pod_type >::result norm ( const T1& X, const uword k, const typename arma_real_or_cx_only<typename T1::elem_type>::result* junk = 0 ) { arma_extra_debug_sigprint(); arma_ignore(junk); typedef typename T1::pod_type T; const Proxy<T1> P(X); if(P.get_n_elem() == 0) { return T(0); } const bool is_vec = (P.get_n_rows() == 1) || (P.get_n_cols() == 1); if(is_vec == true) { switch(k) { case 1: return arma_vec_norm_1(P); break; case 2: return arma_vec_norm_2(P); break; default: { arma_debug_check( (k == 0), "norm(): k must be greater than zero" ); return arma_vec_norm_k(P, int(k)); } } } else { switch(k) { case 1: return arma_mat_norm_1(P); break; case 2: return arma_mat_norm_2(P); break; default: arma_stop("norm(): unsupported matrix norm type"); return T(0); } } } template<typename T1> inline arma_warn_unused typename enable_if2< is_arma_type<T1>::value, typename T1::pod_type >::result norm ( const T1& X, const char* method, const typename arma_real_or_cx_only<typename T1::elem_type>::result* junk = 0 ) { arma_extra_debug_sigprint(); arma_ignore(junk); typedef typename T1::pod_type T; const Proxy<T1> P(X); if(P.get_n_elem() == 0) { return T(0); } const char sig = method[0]; const bool is_vec = (P.get_n_rows() == 1) || (P.get_n_cols() == 1); if(is_vec == true) { if( (sig == 'i') || (sig == 'I') || (sig == '+') ) // max norm { return arma_vec_norm_max(P); } else if(sig == '-') // min norm { return arma_vec_norm_min(P); } else if( (sig == 'f') || (sig == 'F') ) { return arma_vec_norm_2(P); } else { arma_stop("norm(): unsupported vector norm type"); return T(0); } } else { if( (sig == 'i') || (sig == 'I') || (sig == '+') ) // inf norm { return arma_mat_norm_inf(P); } else if( (sig == 'f') || (sig == 'F') ) { return arma_vec_norm_2(P); } else { arma_stop("norm(): unsupported matrix norm type"); return T(0); } } } // // norms for sparse matrices template<typename T1> inline typename T1::pod_type arma_mat_norm_1(const SpProxy<T1>& P) { arma_extra_debug_sigprint(); // TODO: this can be sped up with a dedicated implementation return as_scalar( max( sum(abs(P.Q), 0), 1) ); } // template<typename T1> // inline // typename T1::pod_type // arma_mat_norm_2(const SpProxy<T1>& P) // { // arma_extra_debug_sigprint(); // // // TODO: norm = sqrt( largest eigenvalue of (A^H)*A ), where ^H is the conjugate transpose // // TODO: can use ARPACK or directly implement the Arnoldi iteration // // http://math.stackexchange.com/questions/4368/computing-the-largest-eigenvalue-of-a-very-large-sparse-matrix // } template<typename T1> inline typename T1::pod_type arma_mat_norm_inf(const SpProxy<T1>& P) { arma_extra_debug_sigprint(); // TODO: this can be sped up with a dedicated implementation return as_scalar( max( sum(abs(P.Q), 1), 0) ); } template<typename T1> inline arma_warn_unused typename enable_if2< is_arma_sparse_type<T1>::value, typename T1::pod_type >::result norm ( const T1& X, const uword k, const typename arma_real_or_cx_only<typename T1::elem_type>::result* junk = 0 ) { arma_extra_debug_sigprint(); arma_ignore(junk); typedef typename T1::elem_type eT; typedef typename T1::pod_type T; const SpProxy<T1> P(X); if(P.get_n_nonzero() == 0) { return T(0); } const bool is_vec = (P.get_n_rows() == 1) || (P.get_n_cols() == 1); if(is_vec == true) { const unwrap_spmat<typename SpProxy<T1>::stored_type> tmp(P.Q); const SpMat<eT>& A = tmp.M; // create a fake dense vector to allow reuse of code for dense vectors Col<eT> fake_vector( access::rwp(A.values), A.n_nonzero, false ); const Proxy< Col<eT> > P_fake_vector(fake_vector); switch(k) { case 1: return arma_vec_norm_1(P_fake_vector); break; case 2: return arma_vec_norm_2(P_fake_vector); break; default: { arma_debug_check( (k == 0), "norm(): k must be greater than zero" ); return arma_vec_norm_k(P_fake_vector, int(k)); } } } else { switch(k) { case 1: return arma_mat_norm_1(P); break; // case 2: // return arma_mat_norm_2(P); // break; default: arma_stop("norm(): unsupported or unimplemented norm type for sparse matrices"); return T(0); } } } template<typename T1> inline arma_warn_unused typename enable_if2< is_arma_sparse_type<T1>::value, typename T1::pod_type >::result norm ( const T1& X, const char* method, const typename arma_real_or_cx_only<typename T1::elem_type>::result* junk = 0 ) { arma_extra_debug_sigprint(); arma_ignore(junk); typedef typename T1::elem_type eT; typedef typename T1::pod_type T; const SpProxy<T1> P(X); if(P.get_n_nonzero() == 0) { return T(0); } const unwrap_spmat<typename SpProxy<T1>::stored_type> tmp(P.Q); const SpMat<eT>& A = tmp.M; // create a fake dense vector to allow reuse of code for dense vectors Col<eT> fake_vector( access::rwp(A.values), A.n_nonzero, false ); const Proxy< Col<eT> > P_fake_vector(fake_vector); const char sig = method[0]; const bool is_vec = (P.get_n_rows() == 1) || (P.get_n_cols() == 1); if(is_vec == true) { if( (sig == 'i') || (sig == 'I') || (sig == '+') ) // max norm { return arma_vec_norm_max(P_fake_vector); } else if(sig == '-') // min norm { const T val = arma_vec_norm_min(P_fake_vector); if( P.get_n_nonzero() < P.get_n_elem() ) { return (std::min)(T(0), val); } else { return val; } } else if( (sig == 'f') || (sig == 'F') ) { return arma_vec_norm_2(P_fake_vector); } else { arma_stop("norm(): unsupported vector norm type"); return T(0); } } else { if( (sig == 'i') || (sig == 'I') || (sig == '+') ) // inf norm { return arma_mat_norm_inf(P); } else if( (sig == 'f') || (sig == 'F') ) { return arma_vec_norm_2(P_fake_vector); } else { arma_stop("norm(): unsupported matrix norm type"); return T(0); } } } //! @}