view armadillo-3.900.4/include/armadillo_bits/fft_engine.hpp @ 84:55a047986812 tip

Update library URI so as not to be document-local
author Chris Cannam
date Wed, 22 Apr 2020 14:21:57 +0100
parents 1ec0e2823891
children
line wrap: on
line source
// This Source Code Form is a compilation of:
// (1) source code written by Conrad Sanderson, and
// (2) a modified form of source code referred to as "kissfft.hh".
// 
// This compilation is Copyright (C) 2013 Conrad Sanderson
// and is subject to the terms of the Mozilla Public License, v. 2.0.
// 
// The source code that is distinct and separate from "kissfft.hh"
// is Copyright (C) 2013 Conrad Sanderson and is subject to the
// terms of the Mozilla Public License, v. 2.0.
// 
// If a copy of the MPL was not distributed with this file,
// You can obtain one at http://mozilla.org/MPL/2.0/.
// 
// The original "kissfft.hh" source code is licensed under a 3-clause BSD license,
// as follows:
// 
// Copyright (c) 2003-2010 Mark Borgerding
// 
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
// 
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// 
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// 
// * Neither the author nor the names of any contributors may be used to endorse or promote
//   products derived from this software without specific prior written permission.
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
// OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
// AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER
// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
// OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
// OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.



template<typename cx_type, uword fixed_N, bool> struct store {};

template<typename cx_type, uword fixed_N>
struct store<cx_type, fixed_N, true>
  {
  static const uword N = fixed_N;
  
  arma_aligned cx_type coeffs_array[fixed_N];
  
  inline store()      {}
  inline store(uword) {}
  
  arma_inline       cx_type* coeffs_ptr()       { return &coeffs_array[0]; }
  arma_inline const cx_type* coeffs_ptr() const { return &coeffs_array[0]; }
  };



template<typename cx_type, uword fixed_N>
struct store<cx_type, fixed_N, false>
  {
  const uword N;
  
  podarray<cx_type> coeffs_array;
  
  inline store()           : N(0)    {}
  inline store(uword in_N) : N(in_N) { coeffs_array.set_size(N); }
  
  arma_inline       cx_type* coeffs_ptr()       { return coeffs_array.memptr(); }
  arma_inline const cx_type* coeffs_ptr() const { return coeffs_array.memptr(); }
  };



template<typename cx_type, bool inverse, uword fixed_N = 0>
class fft_engine : public store<cx_type, fixed_N, (fixed_N > 0)>
  {
  public:
  
  typedef typename get_pod_type<cx_type>::result T;
  
  using store<cx_type, fixed_N, (fixed_N > 0)>::N;
  using store<cx_type, fixed_N, (fixed_N > 0)>::coeffs_ptr;
  
  podarray<uword>   residue;
  podarray<uword>   radix;
  
  podarray<cx_type> tmp_array;
  
  
  template<bool fill>
  inline
  uword
  calc_radix()
    {
    uword i = 0;
    
    for(uword n = N, r=4; n >= 2; ++i)
      {
      while( (n % r) > 0 )
        {
        switch(r)
          {
          case 2:  r  = 3; break;
          case 4:  r  = 2; break;
          default: r += 2; break;
          }
        
        if(r*r > n) { r = n; }
        }
      
      n /= r;
      
      if(fill)
        {
        residue[i] = n;
          radix[i] = r;
        }
      }
    
    return i;
    }
  
  
  
  inline
  fft_engine(const uword in_N)
    : store< cx_type, fixed_N, (fixed_N > 0) >(in_N)
    {
    arma_extra_debug_sigprint();
    
    const uword len = calc_radix<false>();
    
    residue.set_size(len);
      radix.set_size(len);
    
    calc_radix<true>();
    
    
    // calculate the constant coefficients
    
    cx_type* coeffs = coeffs_ptr();
    
    const T k = T( (inverse) ? +2 : -2 ) * std::acos( T(-1) ) / T(N);
    
    for(uword i=0; i < N; ++i)  { coeffs[i] = std::exp( cx_type(T(0), i*k) ); }
    }
  
  
  
  arma_hot
  inline
  void
  butterfly_2(cx_type* Y, const uword stride, const uword m)
    {
    arma_extra_debug_sigprint();
    
    const cx_type* coeffs = coeffs_ptr();
    
    for(uword i=0; i < m; ++i)
      {
      const cx_type t = Y[i+m] * coeffs[i*stride];
      
      Y[i+m] =  Y[i] - t;
      Y[i  ] += t;
      }
    }
  
  
  
  arma_hot
  inline
  void
  butterfly_3(cx_type* Y, const uword stride, const uword m)
    {
    arma_extra_debug_sigprint();
    
    arma_aligned cx_type tmp[5];
    
    cx_type* coeffs1 = coeffs_ptr();
    cx_type* coeffs2 = coeffs1;
    
    const T coeff_sm_imag = coeffs1[stride*m].imag();
    
    const uword n = m*2;
    
    // TODO: rearrange the indices within tmp[] into a more sane order
    
    for(uword i = m; i > 0; --i)
      {
      tmp[1] = Y[m] * (*coeffs1);
      tmp[2] = Y[n] * (*coeffs2);
      
      tmp[0]  = tmp[1] - tmp[2];
      tmp[0] *= coeff_sm_imag;
      
      tmp[3] = tmp[1] + tmp[2];
      
      Y[m] = cx_type( (Y[0].real() - (0.5*tmp[3].real())), (Y[0].imag() - (0.5*tmp[3].imag())) );
      
      Y[0] += tmp[3];
      
      
      Y[n] = cx_type( (Y[m].real() + tmp[0].imag()), (Y[m].imag() - tmp[0].real()) );
      
      Y[m] += cx_type( -tmp[0].imag(), tmp[0].real() );
      
      Y++;
      
      coeffs1 += stride;
      coeffs2 += stride*2;
      }
    }
  
  
  
  arma_hot
  inline
  void
  butterfly_4(cx_type* Y, const uword stride, const uword m)
    {
    arma_extra_debug_sigprint();
    
    arma_aligned cx_type tmp[7];
    
    const cx_type* coeffs = coeffs_ptr();
    
    const uword m2 = m*2;
    const uword m3 = m*3;
    
    // TODO: rearrange the indices within tmp[] into a more sane order
    
    for(uword i=0; i < m; ++i)
      {
      tmp[0] = Y[i + m ] * coeffs[i*stride  ];
      tmp[2] = Y[i + m3] * coeffs[i*stride*3];
      tmp[3] = tmp[0] + tmp[2];
      
      //tmp[4] = tmp[0] - tmp[2];
      //tmp[4] = (inverse) ? cx_type( -(tmp[4].imag()), tmp[4].real() ) : cx_type( tmp[4].imag(), -tmp[4].real() );
      
      tmp[4] = (inverse)
                 ? cx_type( (tmp[2].imag() - tmp[0].imag()), (tmp[0].real() - tmp[2].real()) )
                 : cx_type( (tmp[0].imag() - tmp[2].imag()), (tmp[2].real() - tmp[0].real()) );
      
      tmp[1] = Y[i + m2] * coeffs[i*stride*2];
      tmp[5] = Y[i] - tmp[1];
      
      
      Y[i     ] += tmp[1];
      Y[i + m2]  = Y[i] - tmp[3];
      Y[i     ] += tmp[3];
      Y[i + m ]  = tmp[5] + tmp[4];
      Y[i + m3]  = tmp[5] - tmp[4];
      }
    }
  
  
  
  inline
  arma_hot
  void
  butterfly_5(cx_type* Y, const uword stride, const uword m)
    {
    arma_extra_debug_sigprint();
    
    arma_aligned cx_type tmp[13];
    
    const cx_type* coeffs = coeffs_ptr();
    
    const T a_real = coeffs[stride*1*m].real();
    const T a_imag = coeffs[stride*1*m].imag();
    
    const T b_real = coeffs[stride*2*m].real();
    const T b_imag = coeffs[stride*2*m].imag();
    
    cx_type* Y0 = Y;
    cx_type* Y1 = Y + 1*m;
    cx_type* Y2 = Y + 2*m;
    cx_type* Y3 = Y + 3*m;
    cx_type* Y4 = Y + 4*m;
    
    for(uword i=0; i < m; ++i)
      {
      tmp[0] = (*Y0);
      
      tmp[1] = (*Y1) * coeffs[stride*1*i];
      tmp[2] = (*Y2) * coeffs[stride*2*i];
      tmp[3] = (*Y3) * coeffs[stride*3*i];
      tmp[4] = (*Y4) * coeffs[stride*4*i];
      
      tmp[7]  = tmp[1] + tmp[4];
      tmp[8]  = tmp[2] + tmp[3];
      tmp[9]  = tmp[2] - tmp[3];
      tmp[10] = tmp[1] - tmp[4];
      
      (*Y0) += tmp[7];
      (*Y0) += tmp[8];
      
      tmp[5] = tmp[0] + cx_type( ( (tmp[7].real() * a_real) + (tmp[8].real() * b_real) ), ( (tmp[7].imag() * a_real) + (tmp[8].imag() * b_real) ) );
      
      tmp[6] =  cx_type( ( (tmp[10].imag() * a_imag) + (tmp[9].imag() * b_imag) ), ( -(tmp[10].real() * a_imag) - (tmp[9].real() * b_imag) ) );
      
      (*Y1) = tmp[5] - tmp[6];
      (*Y4) = tmp[5] + tmp[6];
      
      tmp[11] = tmp[0] +  cx_type( ( (tmp[7].real() * b_real) + (tmp[8].real() * a_real) ), ( (tmp[7].imag() * b_real) + (tmp[8].imag() * a_real) ) );
      
      tmp[12] = cx_type( ( -(tmp[10].imag() * b_imag) + (tmp[9].imag() * a_imag) ), (  (tmp[10].real() * b_imag) - (tmp[9].real() * a_imag) ) );
      
      (*Y2) = tmp[11] + tmp[12];
      (*Y3) = tmp[11] - tmp[12];
      
      Y0++;
      Y1++;
      Y2++;
      Y3++;
      Y4++;
      }
    }
  
  
  
  arma_hot
  inline
  void
  butterfly_N(cx_type* Y, const uword stride, const uword m, const uword r)
    {
    arma_extra_debug_sigprint();
    
    const cx_type* coeffs = coeffs_ptr();
    
    tmp_array.set_min_size(r);
    cx_type* tmp = tmp_array.memptr();
    
    for(uword u=0; u < m; ++u)
      {
      uword k = u;
      
      for(uword v=0; v < r; ++v)
        {
        tmp[v] = Y[k];
        k += m;
        }
      
      k = u;
      
      for(uword v=0; v < r; ++v)
        {
        Y[k] = tmp[0];
        
        uword j = 0;
        
        for(uword w=1; w < r; ++w)
          {
          j += stride * k;
          
          if(j >= N) { j -= N; }
          
          Y[k] += tmp[w] * coeffs[j];
          }
        
        k += m;
        }
      }
    }
  
  
  
  inline
  void
  run(cx_type* Y, const cx_type* X, const uword stage = 0, const uword stride = 1)
    {
    arma_extra_debug_sigprint();
    
    const uword m = residue[stage];
    const uword r =   radix[stage];
    
    const cx_type *Y_end = Y + r*m;
    
    if(m == 1)
      {
      for(cx_type* Yi = Y; Yi != Y_end; Yi++, X += stride)  {  (*Yi) = (*X);  }
      }
    else
      {
      const uword next_stage  = stage + 1;
      const uword next_stride = stride * r;
      
      for(cx_type* Yi = Y; Yi != Y_end; Yi += m, X += stride)  { run(Yi, X, next_stage, next_stride); }
      }
    
    switch(r)
      {
      case 2:  butterfly_2(Y, stride, m   );  break;
      case 3:  butterfly_3(Y, stride, m   );  break;
      case 4:  butterfly_4(Y, stride, m   );  break;
      case 5:  butterfly_5(Y, stride, m   );  break;
      default: butterfly_N(Y, stride, m, r);  break;
      }
    }


  };