Mercurial > hg > segmenter-vamp-plugin
view armadillo-3.900.4/include/armadillo_bits/auxlib_meat.hpp @ 84:55a047986812 tip
Update library URI so as not to be document-local
author | Chris Cannam |
---|---|
date | Wed, 22 Apr 2020 14:21:57 +0100 |
parents | 1ec0e2823891 |
children |
line wrap: on
line source
// Copyright (C) 2008-2013 NICTA (www.nicta.com.au) // Copyright (C) 2008-2013 Conrad Sanderson // Copyright (C) 2009 Edmund Highcock // Copyright (C) 2011 James Sanders // Copyright (C) 2011 Stanislav Funiak // Copyright (C) 2012 Eric Jon Sundstrom // Copyright (C) 2012 Michael McNeil Forbes // // This Source Code Form is subject to the terms of the Mozilla Public // License, v. 2.0. If a copy of the MPL was not distributed with this // file, You can obtain one at http://mozilla.org/MPL/2.0/. //! \addtogroup auxlib //! @{ //! immediate matrix inverse template<typename eT, typename T1> inline bool auxlib::inv(Mat<eT>& out, const Base<eT,T1>& X, const bool slow) { arma_extra_debug_sigprint(); out = X.get_ref(); arma_debug_check( (out.is_square() == false), "inv(): given matrix is not square" ); bool status = false; const uword N = out.n_rows; if( (N <= 4) && (slow == false) ) { status = auxlib::inv_inplace_tinymat(out, N); } if( (N > 4) || (status == false) ) { status = auxlib::inv_inplace_lapack(out); } return status; } template<typename eT> inline bool auxlib::inv(Mat<eT>& out, const Mat<eT>& X, const bool slow) { arma_extra_debug_sigprint(); arma_debug_check( (X.is_square() == false), "inv(): given matrix is not square" ); bool status = false; const uword N = X.n_rows; if( (N <= 4) && (slow == false) ) { status = (&out != &X) ? auxlib::inv_noalias_tinymat(out, X, N) : auxlib::inv_inplace_tinymat(out, N); } if( (N > 4) || (status == false) ) { out = X; status = auxlib::inv_inplace_lapack(out); } return status; } template<typename eT> inline bool auxlib::inv_noalias_tinymat(Mat<eT>& out, const Mat<eT>& X, const uword N) { arma_extra_debug_sigprint(); bool det_ok = true; out.set_size(N,N); switch(N) { case 1: { out[0] = eT(1) / X[0]; }; break; case 2: { const eT* Xm = X.memptr(); const eT a = Xm[pos<0,0>::n2]; const eT b = Xm[pos<0,1>::n2]; const eT c = Xm[pos<1,0>::n2]; const eT d = Xm[pos<1,1>::n2]; const eT tmp_det = (a*d - b*c); if(tmp_det != eT(0)) { eT* outm = out.memptr(); outm[pos<0,0>::n2] = d / tmp_det; outm[pos<0,1>::n2] = -b / tmp_det; outm[pos<1,0>::n2] = -c / tmp_det; outm[pos<1,1>::n2] = a / tmp_det; } else { det_ok = false; } }; break; case 3: { const eT* X_col0 = X.colptr(0); const eT a11 = X_col0[0]; const eT a21 = X_col0[1]; const eT a31 = X_col0[2]; const eT* X_col1 = X.colptr(1); const eT a12 = X_col1[0]; const eT a22 = X_col1[1]; const eT a32 = X_col1[2]; const eT* X_col2 = X.colptr(2); const eT a13 = X_col2[0]; const eT a23 = X_col2[1]; const eT a33 = X_col2[2]; const eT tmp_det = a11*(a33*a22 - a32*a23) - a21*(a33*a12-a32*a13) + a31*(a23*a12 - a22*a13); if(tmp_det != eT(0)) { eT* out_col0 = out.colptr(0); out_col0[0] = (a33*a22 - a32*a23) / tmp_det; out_col0[1] = -(a33*a21 - a31*a23) / tmp_det; out_col0[2] = (a32*a21 - a31*a22) / tmp_det; eT* out_col1 = out.colptr(1); out_col1[0] = -(a33*a12 - a32*a13) / tmp_det; out_col1[1] = (a33*a11 - a31*a13) / tmp_det; out_col1[2] = -(a32*a11 - a31*a12) / tmp_det; eT* out_col2 = out.colptr(2); out_col2[0] = (a23*a12 - a22*a13) / tmp_det; out_col2[1] = -(a23*a11 - a21*a13) / tmp_det; out_col2[2] = (a22*a11 - a21*a12) / tmp_det; } else { det_ok = false; } }; break; case 4: { const eT tmp_det = det(X); if(tmp_det != eT(0)) { const eT* Xm = X.memptr(); eT* outm = out.memptr(); outm[pos<0,0>::n4] = ( Xm[pos<1,2>::n4]*Xm[pos<2,3>::n4]*Xm[pos<3,1>::n4] - Xm[pos<1,3>::n4]*Xm[pos<2,2>::n4]*Xm[pos<3,1>::n4] + Xm[pos<1,3>::n4]*Xm[pos<2,1>::n4]*Xm[pos<3,2>::n4] - Xm[pos<1,1>::n4]*Xm[pos<2,3>::n4]*Xm[pos<3,2>::n4] - Xm[pos<1,2>::n4]*Xm[pos<2,1>::n4]*Xm[pos<3,3>::n4] + Xm[pos<1,1>::n4]*Xm[pos<2,2>::n4]*Xm[pos<3,3>::n4] ) / tmp_det; outm[pos<1,0>::n4] = ( Xm[pos<1,3>::n4]*Xm[pos<2,2>::n4]*Xm[pos<3,0>::n4] - Xm[pos<1,2>::n4]*Xm[pos<2,3>::n4]*Xm[pos<3,0>::n4] - Xm[pos<1,3>::n4]*Xm[pos<2,0>::n4]*Xm[pos<3,2>::n4] + Xm[pos<1,0>::n4]*Xm[pos<2,3>::n4]*Xm[pos<3,2>::n4] + Xm[pos<1,2>::n4]*Xm[pos<2,0>::n4]*Xm[pos<3,3>::n4] - Xm[pos<1,0>::n4]*Xm[pos<2,2>::n4]*Xm[pos<3,3>::n4] ) / tmp_det; outm[pos<2,0>::n4] = ( Xm[pos<1,1>::n4]*Xm[pos<2,3>::n4]*Xm[pos<3,0>::n4] - Xm[pos<1,3>::n4]*Xm[pos<2,1>::n4]*Xm[pos<3,0>::n4] + Xm[pos<1,3>::n4]*Xm[pos<2,0>::n4]*Xm[pos<3,1>::n4] - Xm[pos<1,0>::n4]*Xm[pos<2,3>::n4]*Xm[pos<3,1>::n4] - Xm[pos<1,1>::n4]*Xm[pos<2,0>::n4]*Xm[pos<3,3>::n4] + Xm[pos<1,0>::n4]*Xm[pos<2,1>::n4]*Xm[pos<3,3>::n4] ) / tmp_det; outm[pos<3,0>::n4] = ( Xm[pos<1,2>::n4]*Xm[pos<2,1>::n4]*Xm[pos<3,0>::n4] - Xm[pos<1,1>::n4]*Xm[pos<2,2>::n4]*Xm[pos<3,0>::n4] - Xm[pos<1,2>::n4]*Xm[pos<2,0>::n4]*Xm[pos<3,1>::n4] + Xm[pos<1,0>::n4]*Xm[pos<2,2>::n4]*Xm[pos<3,1>::n4] + Xm[pos<1,1>::n4]*Xm[pos<2,0>::n4]*Xm[pos<3,2>::n4] - Xm[pos<1,0>::n4]*Xm[pos<2,1>::n4]*Xm[pos<3,2>::n4] ) / tmp_det; outm[pos<0,1>::n4] = ( Xm[pos<0,3>::n4]*Xm[pos<2,2>::n4]*Xm[pos<3,1>::n4] - Xm[pos<0,2>::n4]*Xm[pos<2,3>::n4]*Xm[pos<3,1>::n4] - Xm[pos<0,3>::n4]*Xm[pos<2,1>::n4]*Xm[pos<3,2>::n4] + Xm[pos<0,1>::n4]*Xm[pos<2,3>::n4]*Xm[pos<3,2>::n4] + Xm[pos<0,2>::n4]*Xm[pos<2,1>::n4]*Xm[pos<3,3>::n4] - Xm[pos<0,1>::n4]*Xm[pos<2,2>::n4]*Xm[pos<3,3>::n4] ) / tmp_det; outm[pos<1,1>::n4] = ( Xm[pos<0,2>::n4]*Xm[pos<2,3>::n4]*Xm[pos<3,0>::n4] - Xm[pos<0,3>::n4]*Xm[pos<2,2>::n4]*Xm[pos<3,0>::n4] + Xm[pos<0,3>::n4]*Xm[pos<2,0>::n4]*Xm[pos<3,2>::n4] - Xm[pos<0,0>::n4]*Xm[pos<2,3>::n4]*Xm[pos<3,2>::n4] - Xm[pos<0,2>::n4]*Xm[pos<2,0>::n4]*Xm[pos<3,3>::n4] + Xm[pos<0,0>::n4]*Xm[pos<2,2>::n4]*Xm[pos<3,3>::n4] ) / tmp_det; outm[pos<2,1>::n4] = ( Xm[pos<0,3>::n4]*Xm[pos<2,1>::n4]*Xm[pos<3,0>::n4] - Xm[pos<0,1>::n4]*Xm[pos<2,3>::n4]*Xm[pos<3,0>::n4] - Xm[pos<0,3>::n4]*Xm[pos<2,0>::n4]*Xm[pos<3,1>::n4] + Xm[pos<0,0>::n4]*Xm[pos<2,3>::n4]*Xm[pos<3,1>::n4] + Xm[pos<0,1>::n4]*Xm[pos<2,0>::n4]*Xm[pos<3,3>::n4] - Xm[pos<0,0>::n4]*Xm[pos<2,1>::n4]*Xm[pos<3,3>::n4] ) / tmp_det; outm[pos<3,1>::n4] = ( Xm[pos<0,1>::n4]*Xm[pos<2,2>::n4]*Xm[pos<3,0>::n4] - Xm[pos<0,2>::n4]*Xm[pos<2,1>::n4]*Xm[pos<3,0>::n4] + Xm[pos<0,2>::n4]*Xm[pos<2,0>::n4]*Xm[pos<3,1>::n4] - Xm[pos<0,0>::n4]*Xm[pos<2,2>::n4]*Xm[pos<3,1>::n4] - Xm[pos<0,1>::n4]*Xm[pos<2,0>::n4]*Xm[pos<3,2>::n4] + Xm[pos<0,0>::n4]*Xm[pos<2,1>::n4]*Xm[pos<3,2>::n4] ) / tmp_det; outm[pos<0,2>::n4] = ( Xm[pos<0,2>::n4]*Xm[pos<1,3>::n4]*Xm[pos<3,1>::n4] - Xm[pos<0,3>::n4]*Xm[pos<1,2>::n4]*Xm[pos<3,1>::n4] + Xm[pos<0,3>::n4]*Xm[pos<1,1>::n4]*Xm[pos<3,2>::n4] - Xm[pos<0,1>::n4]*Xm[pos<1,3>::n4]*Xm[pos<3,2>::n4] - Xm[pos<0,2>::n4]*Xm[pos<1,1>::n4]*Xm[pos<3,3>::n4] + Xm[pos<0,1>::n4]*Xm[pos<1,2>::n4]*Xm[pos<3,3>::n4] ) / tmp_det; outm[pos<1,2>::n4] = ( Xm[pos<0,3>::n4]*Xm[pos<1,2>::n4]*Xm[pos<3,0>::n4] - Xm[pos<0,2>::n4]*Xm[pos<1,3>::n4]*Xm[pos<3,0>::n4] - Xm[pos<0,3>::n4]*Xm[pos<1,0>::n4]*Xm[pos<3,2>::n4] + Xm[pos<0,0>::n4]*Xm[pos<1,3>::n4]*Xm[pos<3,2>::n4] + Xm[pos<0,2>::n4]*Xm[pos<1,0>::n4]*Xm[pos<3,3>::n4] - Xm[pos<0,0>::n4]*Xm[pos<1,2>::n4]*Xm[pos<3,3>::n4] ) / tmp_det; outm[pos<2,2>::n4] = ( Xm[pos<0,1>::n4]*Xm[pos<1,3>::n4]*Xm[pos<3,0>::n4] - Xm[pos<0,3>::n4]*Xm[pos<1,1>::n4]*Xm[pos<3,0>::n4] + Xm[pos<0,3>::n4]*Xm[pos<1,0>::n4]*Xm[pos<3,1>::n4] - Xm[pos<0,0>::n4]*Xm[pos<1,3>::n4]*Xm[pos<3,1>::n4] - Xm[pos<0,1>::n4]*Xm[pos<1,0>::n4]*Xm[pos<3,3>::n4] + Xm[pos<0,0>::n4]*Xm[pos<1,1>::n4]*Xm[pos<3,3>::n4] ) / tmp_det; outm[pos<3,2>::n4] = ( Xm[pos<0,2>::n4]*Xm[pos<1,1>::n4]*Xm[pos<3,0>::n4] - Xm[pos<0,1>::n4]*Xm[pos<1,2>::n4]*Xm[pos<3,0>::n4] - Xm[pos<0,2>::n4]*Xm[pos<1,0>::n4]*Xm[pos<3,1>::n4] + Xm[pos<0,0>::n4]*Xm[pos<1,2>::n4]*Xm[pos<3,1>::n4] + Xm[pos<0,1>::n4]*Xm[pos<1,0>::n4]*Xm[pos<3,2>::n4] - Xm[pos<0,0>::n4]*Xm[pos<1,1>::n4]*Xm[pos<3,2>::n4] ) / tmp_det; outm[pos<0,3>::n4] = ( Xm[pos<0,3>::n4]*Xm[pos<1,2>::n4]*Xm[pos<2,1>::n4] - Xm[pos<0,2>::n4]*Xm[pos<1,3>::n4]*Xm[pos<2,1>::n4] - Xm[pos<0,3>::n4]*Xm[pos<1,1>::n4]*Xm[pos<2,2>::n4] + Xm[pos<0,1>::n4]*Xm[pos<1,3>::n4]*Xm[pos<2,2>::n4] + Xm[pos<0,2>::n4]*Xm[pos<1,1>::n4]*Xm[pos<2,3>::n4] - Xm[pos<0,1>::n4]*Xm[pos<1,2>::n4]*Xm[pos<2,3>::n4] ) / tmp_det; outm[pos<1,3>::n4] = ( Xm[pos<0,2>::n4]*Xm[pos<1,3>::n4]*Xm[pos<2,0>::n4] - Xm[pos<0,3>::n4]*Xm[pos<1,2>::n4]*Xm[pos<2,0>::n4] + Xm[pos<0,3>::n4]*Xm[pos<1,0>::n4]*Xm[pos<2,2>::n4] - Xm[pos<0,0>::n4]*Xm[pos<1,3>::n4]*Xm[pos<2,2>::n4] - Xm[pos<0,2>::n4]*Xm[pos<1,0>::n4]*Xm[pos<2,3>::n4] + Xm[pos<0,0>::n4]*Xm[pos<1,2>::n4]*Xm[pos<2,3>::n4] ) / tmp_det; outm[pos<2,3>::n4] = ( Xm[pos<0,3>::n4]*Xm[pos<1,1>::n4]*Xm[pos<2,0>::n4] - Xm[pos<0,1>::n4]*Xm[pos<1,3>::n4]*Xm[pos<2,0>::n4] - Xm[pos<0,3>::n4]*Xm[pos<1,0>::n4]*Xm[pos<2,1>::n4] + Xm[pos<0,0>::n4]*Xm[pos<1,3>::n4]*Xm[pos<2,1>::n4] + Xm[pos<0,1>::n4]*Xm[pos<1,0>::n4]*Xm[pos<2,3>::n4] - Xm[pos<0,0>::n4]*Xm[pos<1,1>::n4]*Xm[pos<2,3>::n4] ) / tmp_det; outm[pos<3,3>::n4] = ( Xm[pos<0,1>::n4]*Xm[pos<1,2>::n4]*Xm[pos<2,0>::n4] - Xm[pos<0,2>::n4]*Xm[pos<1,1>::n4]*Xm[pos<2,0>::n4] + Xm[pos<0,2>::n4]*Xm[pos<1,0>::n4]*Xm[pos<2,1>::n4] - Xm[pos<0,0>::n4]*Xm[pos<1,2>::n4]*Xm[pos<2,1>::n4] - Xm[pos<0,1>::n4]*Xm[pos<1,0>::n4]*Xm[pos<2,2>::n4] + Xm[pos<0,0>::n4]*Xm[pos<1,1>::n4]*Xm[pos<2,2>::n4] ) / tmp_det; } else { det_ok = false; } }; break; default: ; } return det_ok; } template<typename eT> inline bool auxlib::inv_inplace_tinymat(Mat<eT>& X, const uword N) { arma_extra_debug_sigprint(); bool det_ok = true; // for more info, see: // http://www.dr-lex.34sp.com/random/matrix_inv.html // http://www.cvl.iis.u-tokyo.ac.jp/~miyazaki/tech/teche23.html // http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm // http://www.geometrictools.com//LibFoundation/Mathematics/Wm4Matrix4.inl switch(N) { case 1: { X[0] = eT(1) / X[0]; }; break; case 2: { const eT a = X[pos<0,0>::n2]; const eT b = X[pos<0,1>::n2]; const eT c = X[pos<1,0>::n2]; const eT d = X[pos<1,1>::n2]; const eT tmp_det = (a*d - b*c); if(tmp_det != eT(0)) { X[pos<0,0>::n2] = d / tmp_det; X[pos<0,1>::n2] = -b / tmp_det; X[pos<1,0>::n2] = -c / tmp_det; X[pos<1,1>::n2] = a / tmp_det; } else { det_ok = false; } }; break; case 3: { eT* X_col0 = X.colptr(0); eT* X_col1 = X.colptr(1); eT* X_col2 = X.colptr(2); const eT a11 = X_col0[0]; const eT a21 = X_col0[1]; const eT a31 = X_col0[2]; const eT a12 = X_col1[0]; const eT a22 = X_col1[1]; const eT a32 = X_col1[2]; const eT a13 = X_col2[0]; const eT a23 = X_col2[1]; const eT a33 = X_col2[2]; const eT tmp_det = a11*(a33*a22 - a32*a23) - a21*(a33*a12-a32*a13) + a31*(a23*a12 - a22*a13); if(tmp_det != eT(0)) { X_col0[0] = (a33*a22 - a32*a23) / tmp_det; X_col0[1] = -(a33*a21 - a31*a23) / tmp_det; X_col0[2] = (a32*a21 - a31*a22) / tmp_det; X_col1[0] = -(a33*a12 - a32*a13) / tmp_det; X_col1[1] = (a33*a11 - a31*a13) / tmp_det; X_col1[2] = -(a32*a11 - a31*a12) / tmp_det; X_col2[0] = (a23*a12 - a22*a13) / tmp_det; X_col2[1] = -(a23*a11 - a21*a13) / tmp_det; X_col2[2] = (a22*a11 - a21*a12) / tmp_det; } else { det_ok = false; } }; break; case 4: { const eT tmp_det = det(X); if(tmp_det != eT(0)) { const Mat<eT> A(X); const eT* Am = A.memptr(); eT* Xm = X.memptr(); Xm[pos<0,0>::n4] = ( Am[pos<1,2>::n4]*Am[pos<2,3>::n4]*Am[pos<3,1>::n4] - Am[pos<1,3>::n4]*Am[pos<2,2>::n4]*Am[pos<3,1>::n4] + Am[pos<1,3>::n4]*Am[pos<2,1>::n4]*Am[pos<3,2>::n4] - Am[pos<1,1>::n4]*Am[pos<2,3>::n4]*Am[pos<3,2>::n4] - Am[pos<1,2>::n4]*Am[pos<2,1>::n4]*Am[pos<3,3>::n4] + Am[pos<1,1>::n4]*Am[pos<2,2>::n4]*Am[pos<3,3>::n4] ) / tmp_det; Xm[pos<1,0>::n4] = ( Am[pos<1,3>::n4]*Am[pos<2,2>::n4]*Am[pos<3,0>::n4] - Am[pos<1,2>::n4]*Am[pos<2,3>::n4]*Am[pos<3,0>::n4] - Am[pos<1,3>::n4]*Am[pos<2,0>::n4]*Am[pos<3,2>::n4] + Am[pos<1,0>::n4]*Am[pos<2,3>::n4]*Am[pos<3,2>::n4] + Am[pos<1,2>::n4]*Am[pos<2,0>::n4]*Am[pos<3,3>::n4] - Am[pos<1,0>::n4]*Am[pos<2,2>::n4]*Am[pos<3,3>::n4] ) / tmp_det; Xm[pos<2,0>::n4] = ( Am[pos<1,1>::n4]*Am[pos<2,3>::n4]*Am[pos<3,0>::n4] - Am[pos<1,3>::n4]*Am[pos<2,1>::n4]*Am[pos<3,0>::n4] + Am[pos<1,3>::n4]*Am[pos<2,0>::n4]*Am[pos<3,1>::n4] - Am[pos<1,0>::n4]*Am[pos<2,3>::n4]*Am[pos<3,1>::n4] - Am[pos<1,1>::n4]*Am[pos<2,0>::n4]*Am[pos<3,3>::n4] + Am[pos<1,0>::n4]*Am[pos<2,1>::n4]*Am[pos<3,3>::n4] ) / tmp_det; Xm[pos<3,0>::n4] = ( Am[pos<1,2>::n4]*Am[pos<2,1>::n4]*Am[pos<3,0>::n4] - Am[pos<1,1>::n4]*Am[pos<2,2>::n4]*Am[pos<3,0>::n4] - Am[pos<1,2>::n4]*Am[pos<2,0>::n4]*Am[pos<3,1>::n4] + Am[pos<1,0>::n4]*Am[pos<2,2>::n4]*Am[pos<3,1>::n4] + Am[pos<1,1>::n4]*Am[pos<2,0>::n4]*Am[pos<3,2>::n4] - Am[pos<1,0>::n4]*Am[pos<2,1>::n4]*Am[pos<3,2>::n4] ) / tmp_det; Xm[pos<0,1>::n4] = ( Am[pos<0,3>::n4]*Am[pos<2,2>::n4]*Am[pos<3,1>::n4] - Am[pos<0,2>::n4]*Am[pos<2,3>::n4]*Am[pos<3,1>::n4] - Am[pos<0,3>::n4]*Am[pos<2,1>::n4]*Am[pos<3,2>::n4] + Am[pos<0,1>::n4]*Am[pos<2,3>::n4]*Am[pos<3,2>::n4] + Am[pos<0,2>::n4]*Am[pos<2,1>::n4]*Am[pos<3,3>::n4] - Am[pos<0,1>::n4]*Am[pos<2,2>::n4]*Am[pos<3,3>::n4] ) / tmp_det; Xm[pos<1,1>::n4] = ( Am[pos<0,2>::n4]*Am[pos<2,3>::n4]*Am[pos<3,0>::n4] - Am[pos<0,3>::n4]*Am[pos<2,2>::n4]*Am[pos<3,0>::n4] + Am[pos<0,3>::n4]*Am[pos<2,0>::n4]*Am[pos<3,2>::n4] - Am[pos<0,0>::n4]*Am[pos<2,3>::n4]*Am[pos<3,2>::n4] - Am[pos<0,2>::n4]*Am[pos<2,0>::n4]*Am[pos<3,3>::n4] + Am[pos<0,0>::n4]*Am[pos<2,2>::n4]*Am[pos<3,3>::n4] ) / tmp_det; Xm[pos<2,1>::n4] = ( Am[pos<0,3>::n4]*Am[pos<2,1>::n4]*Am[pos<3,0>::n4] - Am[pos<0,1>::n4]*Am[pos<2,3>::n4]*Am[pos<3,0>::n4] - Am[pos<0,3>::n4]*Am[pos<2,0>::n4]*Am[pos<3,1>::n4] + Am[pos<0,0>::n4]*Am[pos<2,3>::n4]*Am[pos<3,1>::n4] + Am[pos<0,1>::n4]*Am[pos<2,0>::n4]*Am[pos<3,3>::n4] - Am[pos<0,0>::n4]*Am[pos<2,1>::n4]*Am[pos<3,3>::n4] ) / tmp_det; Xm[pos<3,1>::n4] = ( Am[pos<0,1>::n4]*Am[pos<2,2>::n4]*Am[pos<3,0>::n4] - Am[pos<0,2>::n4]*Am[pos<2,1>::n4]*Am[pos<3,0>::n4] + Am[pos<0,2>::n4]*Am[pos<2,0>::n4]*Am[pos<3,1>::n4] - Am[pos<0,0>::n4]*Am[pos<2,2>::n4]*Am[pos<3,1>::n4] - Am[pos<0,1>::n4]*Am[pos<2,0>::n4]*Am[pos<3,2>::n4] + Am[pos<0,0>::n4]*Am[pos<2,1>::n4]*Am[pos<3,2>::n4] ) / tmp_det; Xm[pos<0,2>::n4] = ( Am[pos<0,2>::n4]*Am[pos<1,3>::n4]*Am[pos<3,1>::n4] - Am[pos<0,3>::n4]*Am[pos<1,2>::n4]*Am[pos<3,1>::n4] + Am[pos<0,3>::n4]*Am[pos<1,1>::n4]*Am[pos<3,2>::n4] - Am[pos<0,1>::n4]*Am[pos<1,3>::n4]*Am[pos<3,2>::n4] - Am[pos<0,2>::n4]*Am[pos<1,1>::n4]*Am[pos<3,3>::n4] + Am[pos<0,1>::n4]*Am[pos<1,2>::n4]*Am[pos<3,3>::n4] ) / tmp_det; Xm[pos<1,2>::n4] = ( Am[pos<0,3>::n4]*Am[pos<1,2>::n4]*Am[pos<3,0>::n4] - Am[pos<0,2>::n4]*Am[pos<1,3>::n4]*Am[pos<3,0>::n4] - Am[pos<0,3>::n4]*Am[pos<1,0>::n4]*Am[pos<3,2>::n4] + Am[pos<0,0>::n4]*Am[pos<1,3>::n4]*Am[pos<3,2>::n4] + Am[pos<0,2>::n4]*Am[pos<1,0>::n4]*Am[pos<3,3>::n4] - Am[pos<0,0>::n4]*Am[pos<1,2>::n4]*Am[pos<3,3>::n4] ) / tmp_det; Xm[pos<2,2>::n4] = ( Am[pos<0,1>::n4]*Am[pos<1,3>::n4]*Am[pos<3,0>::n4] - Am[pos<0,3>::n4]*Am[pos<1,1>::n4]*Am[pos<3,0>::n4] + Am[pos<0,3>::n4]*Am[pos<1,0>::n4]*Am[pos<3,1>::n4] - Am[pos<0,0>::n4]*Am[pos<1,3>::n4]*Am[pos<3,1>::n4] - Am[pos<0,1>::n4]*Am[pos<1,0>::n4]*Am[pos<3,3>::n4] + Am[pos<0,0>::n4]*Am[pos<1,1>::n4]*Am[pos<3,3>::n4] ) / tmp_det; Xm[pos<3,2>::n4] = ( Am[pos<0,2>::n4]*Am[pos<1,1>::n4]*Am[pos<3,0>::n4] - Am[pos<0,1>::n4]*Am[pos<1,2>::n4]*Am[pos<3,0>::n4] - Am[pos<0,2>::n4]*Am[pos<1,0>::n4]*Am[pos<3,1>::n4] + Am[pos<0,0>::n4]*Am[pos<1,2>::n4]*Am[pos<3,1>::n4] + Am[pos<0,1>::n4]*Am[pos<1,0>::n4]*Am[pos<3,2>::n4] - Am[pos<0,0>::n4]*Am[pos<1,1>::n4]*Am[pos<3,2>::n4] ) / tmp_det; Xm[pos<0,3>::n4] = ( Am[pos<0,3>::n4]*Am[pos<1,2>::n4]*Am[pos<2,1>::n4] - Am[pos<0,2>::n4]*Am[pos<1,3>::n4]*Am[pos<2,1>::n4] - Am[pos<0,3>::n4]*Am[pos<1,1>::n4]*Am[pos<2,2>::n4] + Am[pos<0,1>::n4]*Am[pos<1,3>::n4]*Am[pos<2,2>::n4] + Am[pos<0,2>::n4]*Am[pos<1,1>::n4]*Am[pos<2,3>::n4] - Am[pos<0,1>::n4]*Am[pos<1,2>::n4]*Am[pos<2,3>::n4] ) / tmp_det; Xm[pos<1,3>::n4] = ( Am[pos<0,2>::n4]*Am[pos<1,3>::n4]*Am[pos<2,0>::n4] - Am[pos<0,3>::n4]*Am[pos<1,2>::n4]*Am[pos<2,0>::n4] + Am[pos<0,3>::n4]*Am[pos<1,0>::n4]*Am[pos<2,2>::n4] - Am[pos<0,0>::n4]*Am[pos<1,3>::n4]*Am[pos<2,2>::n4] - Am[pos<0,2>::n4]*Am[pos<1,0>::n4]*Am[pos<2,3>::n4] + Am[pos<0,0>::n4]*Am[pos<1,2>::n4]*Am[pos<2,3>::n4] ) / tmp_det; Xm[pos<2,3>::n4] = ( Am[pos<0,3>::n4]*Am[pos<1,1>::n4]*Am[pos<2,0>::n4] - Am[pos<0,1>::n4]*Am[pos<1,3>::n4]*Am[pos<2,0>::n4] - Am[pos<0,3>::n4]*Am[pos<1,0>::n4]*Am[pos<2,1>::n4] + Am[pos<0,0>::n4]*Am[pos<1,3>::n4]*Am[pos<2,1>::n4] + Am[pos<0,1>::n4]*Am[pos<1,0>::n4]*Am[pos<2,3>::n4] - Am[pos<0,0>::n4]*Am[pos<1,1>::n4]*Am[pos<2,3>::n4] ) / tmp_det; Xm[pos<3,3>::n4] = ( Am[pos<0,1>::n4]*Am[pos<1,2>::n4]*Am[pos<2,0>::n4] - Am[pos<0,2>::n4]*Am[pos<1,1>::n4]*Am[pos<2,0>::n4] + Am[pos<0,2>::n4]*Am[pos<1,0>::n4]*Am[pos<2,1>::n4] - Am[pos<0,0>::n4]*Am[pos<1,2>::n4]*Am[pos<2,1>::n4] - Am[pos<0,1>::n4]*Am[pos<1,0>::n4]*Am[pos<2,2>::n4] + Am[pos<0,0>::n4]*Am[pos<1,1>::n4]*Am[pos<2,2>::n4] ) / tmp_det; } else { det_ok = false; } }; break; default: ; } return det_ok; } template<typename eT> inline bool auxlib::inv_inplace_lapack(Mat<eT>& out) { arma_extra_debug_sigprint(); if(out.is_empty()) { return true; } #if defined(ARMA_USE_ATLAS) { podarray<int> ipiv(out.n_rows); int info = atlas::clapack_getrf(atlas::CblasColMajor, out.n_rows, out.n_cols, out.memptr(), out.n_rows, ipiv.memptr()); if(info == 0) { info = atlas::clapack_getri(atlas::CblasColMajor, out.n_rows, out.memptr(), out.n_rows, ipiv.memptr()); } return (info == 0); } #elif defined(ARMA_USE_LAPACK) { blas_int n_rows = out.n_rows; blas_int n_cols = out.n_cols; blas_int lwork = 0; blas_int lwork_min = (std::max)(blas_int(1), n_rows); blas_int info = 0; podarray<blas_int> ipiv(out.n_rows); eT work_query[2]; blas_int lwork_query = -1; lapack::getri(&n_rows, out.memptr(), &n_rows, ipiv.memptr(), &work_query[0], &lwork_query, &info); if(info == 0) { const blas_int lwork_proposed = static_cast<blas_int>( access::tmp_real(work_query[0]) ); lwork = (lwork_proposed > lwork_min) ? lwork_proposed : lwork_min; } else { return false; } podarray<eT> work( static_cast<uword>(lwork) ); lapack::getrf(&n_rows, &n_cols, out.memptr(), &n_rows, ipiv.memptr(), &info); if(info == 0) { lapack::getri(&n_rows, out.memptr(), &n_rows, ipiv.memptr(), work.memptr(), &lwork, &info); } return (info == 0); } #else { arma_stop("inv(): use of ATLAS or LAPACK needs to be enabled"); return false; } #endif } template<typename eT, typename T1> inline bool auxlib::inv_tr(Mat<eT>& out, const Base<eT,T1>& X, const uword layout) { arma_extra_debug_sigprint(); out = X.get_ref(); arma_debug_check( (out.is_square() == false), "inv(): given matrix is not square" ); if(out.is_empty()) { return true; } bool status; #if defined(ARMA_USE_LAPACK) { char uplo = (layout == 0) ? 'U' : 'L'; char diag = 'N'; blas_int n = blas_int(out.n_rows); blas_int info = 0; lapack::trtri(&uplo, &diag, &n, out.memptr(), &n, &info); status = (info == 0); } #else { arma_ignore(layout); arma_stop("inv(): use of LAPACK needs to be enabled"); status = false; } #endif if(status == true) { if(layout == 0) { // upper triangular out = trimatu(out); } else { // lower triangular out = trimatl(out); } } return status; } template<typename eT, typename T1> inline bool auxlib::inv_sym(Mat<eT>& out, const Base<eT,T1>& X, const uword layout) { arma_extra_debug_sigprint(); out = X.get_ref(); arma_debug_check( (out.is_square() == false), "inv(): given matrix is not square" ); if(out.is_empty()) { return true; } bool status; #if defined(ARMA_USE_LAPACK) { char uplo = (layout == 0) ? 'U' : 'L'; blas_int n = blas_int(out.n_rows); blas_int lwork = 3 * (n*n); // TODO: use lwork = -1 to determine optimal size blas_int info = 0; podarray<blas_int> ipiv; ipiv.set_size(out.n_rows); podarray<eT> work; work.set_size( uword(lwork) ); lapack::sytrf(&uplo, &n, out.memptr(), &n, ipiv.memptr(), work.memptr(), &lwork, &info); status = (info == 0); if(status == true) { lapack::sytri(&uplo, &n, out.memptr(), &n, ipiv.memptr(), work.memptr(), &info); out = (layout == 0) ? symmatu(out) : symmatl(out); status = (info == 0); } } #else { arma_ignore(layout); arma_stop("inv(): use of LAPACK needs to be enabled"); status = false; } #endif return status; } template<typename eT, typename T1> inline bool auxlib::inv_sympd(Mat<eT>& out, const Base<eT,T1>& X, const uword layout) { arma_extra_debug_sigprint(); out = X.get_ref(); arma_debug_check( (out.is_square() == false), "inv(): given matrix is not square" ); if(out.is_empty()) { return true; } bool status; #if defined(ARMA_USE_LAPACK) { char uplo = (layout == 0) ? 'U' : 'L'; blas_int n = blas_int(out.n_rows); blas_int info = 0; lapack::potrf(&uplo, &n, out.memptr(), &n, &info); status = (info == 0); if(status == true) { lapack::potri(&uplo, &n, out.memptr(), &n, &info); out = (layout == 0) ? symmatu(out) : symmatl(out); status = (info == 0); } } #else { arma_ignore(layout); arma_stop("inv(): use of LAPACK needs to be enabled"); status = false; } #endif return status; } template<typename eT, typename T1> inline eT auxlib::det(const Base<eT,T1>& X, const bool slow) { const unwrap<T1> tmp(X.get_ref()); const Mat<eT>& A = tmp.M; arma_debug_check( (A.is_square() == false), "det(): matrix is not square" ); const bool make_copy = (is_Mat<T1>::value == true) ? true : false; if(slow == false) { const uword N = A.n_rows; switch(N) { case 0: case 1: case 2: return auxlib::det_tinymat(A, N); break; case 3: case 4: { const eT tmp_det = auxlib::det_tinymat(A, N); return (tmp_det != eT(0)) ? tmp_det : auxlib::det_lapack(A, make_copy); } break; default: return auxlib::det_lapack(A, make_copy); } } return auxlib::det_lapack(A, make_copy); } template<typename eT> inline eT auxlib::det_tinymat(const Mat<eT>& X, const uword N) { arma_extra_debug_sigprint(); switch(N) { case 0: return eT(1); break; case 1: return X[0]; break; case 2: { const eT* Xm = X.memptr(); return ( Xm[pos<0,0>::n2]*Xm[pos<1,1>::n2] - Xm[pos<0,1>::n2]*Xm[pos<1,0>::n2] ); } break; case 3: { // const double tmp1 = X.at(0,0) * X.at(1,1) * X.at(2,2); // const double tmp2 = X.at(0,1) * X.at(1,2) * X.at(2,0); // const double tmp3 = X.at(0,2) * X.at(1,0) * X.at(2,1); // const double tmp4 = X.at(2,0) * X.at(1,1) * X.at(0,2); // const double tmp5 = X.at(2,1) * X.at(1,2) * X.at(0,0); // const double tmp6 = X.at(2,2) * X.at(1,0) * X.at(0,1); // return (tmp1+tmp2+tmp3) - (tmp4+tmp5+tmp6); const eT* a_col0 = X.colptr(0); const eT a11 = a_col0[0]; const eT a21 = a_col0[1]; const eT a31 = a_col0[2]; const eT* a_col1 = X.colptr(1); const eT a12 = a_col1[0]; const eT a22 = a_col1[1]; const eT a32 = a_col1[2]; const eT* a_col2 = X.colptr(2); const eT a13 = a_col2[0]; const eT a23 = a_col2[1]; const eT a33 = a_col2[2]; return ( a11*(a33*a22 - a32*a23) - a21*(a33*a12-a32*a13) + a31*(a23*a12 - a22*a13) ); } break; case 4: { const eT* Xm = X.memptr(); const eT val = \ Xm[pos<0,3>::n4] * Xm[pos<1,2>::n4] * Xm[pos<2,1>::n4] * Xm[pos<3,0>::n4] \ - Xm[pos<0,2>::n4] * Xm[pos<1,3>::n4] * Xm[pos<2,1>::n4] * Xm[pos<3,0>::n4] \ - Xm[pos<0,3>::n4] * Xm[pos<1,1>::n4] * Xm[pos<2,2>::n4] * Xm[pos<3,0>::n4] \ + Xm[pos<0,1>::n4] * Xm[pos<1,3>::n4] * Xm[pos<2,2>::n4] * Xm[pos<3,0>::n4] \ + Xm[pos<0,2>::n4] * Xm[pos<1,1>::n4] * Xm[pos<2,3>::n4] * Xm[pos<3,0>::n4] \ - Xm[pos<0,1>::n4] * Xm[pos<1,2>::n4] * Xm[pos<2,3>::n4] * Xm[pos<3,0>::n4] \ - Xm[pos<0,3>::n4] * Xm[pos<1,2>::n4] * Xm[pos<2,0>::n4] * Xm[pos<3,1>::n4] \ + Xm[pos<0,2>::n4] * Xm[pos<1,3>::n4] * Xm[pos<2,0>::n4] * Xm[pos<3,1>::n4] \ + Xm[pos<0,3>::n4] * Xm[pos<1,0>::n4] * Xm[pos<2,2>::n4] * Xm[pos<3,1>::n4] \ - Xm[pos<0,0>::n4] * Xm[pos<1,3>::n4] * Xm[pos<2,2>::n4] * Xm[pos<3,1>::n4] \ - Xm[pos<0,2>::n4] * Xm[pos<1,0>::n4] * Xm[pos<2,3>::n4] * Xm[pos<3,1>::n4] \ + Xm[pos<0,0>::n4] * Xm[pos<1,2>::n4] * Xm[pos<2,3>::n4] * Xm[pos<3,1>::n4] \ + Xm[pos<0,3>::n4] * Xm[pos<1,1>::n4] * Xm[pos<2,0>::n4] * Xm[pos<3,2>::n4] \ - Xm[pos<0,1>::n4] * Xm[pos<1,3>::n4] * Xm[pos<2,0>::n4] * Xm[pos<3,2>::n4] \ - Xm[pos<0,3>::n4] * Xm[pos<1,0>::n4] * Xm[pos<2,1>::n4] * Xm[pos<3,2>::n4] \ + Xm[pos<0,0>::n4] * Xm[pos<1,3>::n4] * Xm[pos<2,1>::n4] * Xm[pos<3,2>::n4] \ + Xm[pos<0,1>::n4] * Xm[pos<1,0>::n4] * Xm[pos<2,3>::n4] * Xm[pos<3,2>::n4] \ - Xm[pos<0,0>::n4] * Xm[pos<1,1>::n4] * Xm[pos<2,3>::n4] * Xm[pos<3,2>::n4] \ - Xm[pos<0,2>::n4] * Xm[pos<1,1>::n4] * Xm[pos<2,0>::n4] * Xm[pos<3,3>::n4] \ + Xm[pos<0,1>::n4] * Xm[pos<1,2>::n4] * Xm[pos<2,0>::n4] * Xm[pos<3,3>::n4] \ + Xm[pos<0,2>::n4] * Xm[pos<1,0>::n4] * Xm[pos<2,1>::n4] * Xm[pos<3,3>::n4] \ - Xm[pos<0,0>::n4] * Xm[pos<1,2>::n4] * Xm[pos<2,1>::n4] * Xm[pos<3,3>::n4] \ - Xm[pos<0,1>::n4] * Xm[pos<1,0>::n4] * Xm[pos<2,2>::n4] * Xm[pos<3,3>::n4] \ + Xm[pos<0,0>::n4] * Xm[pos<1,1>::n4] * Xm[pos<2,2>::n4] * Xm[pos<3,3>::n4] \ ; return val; } break; default: return eT(0); ; } } //! immediate determinant of a matrix using ATLAS or LAPACK template<typename eT> inline eT auxlib::det_lapack(const Mat<eT>& X, const bool make_copy) { arma_extra_debug_sigprint(); Mat<eT> X_copy; if(make_copy == true) { X_copy = X; } Mat<eT>& tmp = (make_copy == true) ? X_copy : const_cast< Mat<eT>& >(X); if(tmp.is_empty()) { return eT(1); } #if defined(ARMA_USE_ATLAS) { podarray<int> ipiv(tmp.n_rows); //const int info = atlas::clapack_getrf(atlas::CblasColMajor, tmp.n_rows, tmp.n_cols, tmp.memptr(), tmp.n_rows, ipiv.memptr()); // on output tmp appears to be L+U_alt, where U_alt is U with the main diagonal set to zero eT val = tmp.at(0,0); for(uword i=1; i < tmp.n_rows; ++i) { val *= tmp.at(i,i); } int sign = +1; for(uword i=0; i < tmp.n_rows; ++i) { if( int(i) != ipiv.mem[i] ) // NOTE: no adjustment required, as the clapack version of getrf() assumes counting from 0 { sign *= -1; } } return ( (sign < 0) ? -val : val ); } #elif defined(ARMA_USE_LAPACK) { podarray<blas_int> ipiv(tmp.n_rows); blas_int info = 0; blas_int n_rows = blas_int(tmp.n_rows); blas_int n_cols = blas_int(tmp.n_cols); lapack::getrf(&n_rows, &n_cols, tmp.memptr(), &n_rows, ipiv.memptr(), &info); // on output tmp appears to be L+U_alt, where U_alt is U with the main diagonal set to zero eT val = tmp.at(0,0); for(uword i=1; i < tmp.n_rows; ++i) { val *= tmp.at(i,i); } blas_int sign = +1; for(uword i=0; i < tmp.n_rows; ++i) { if( blas_int(i) != (ipiv.mem[i] - 1) ) // NOTE: adjustment of -1 is required as Fortran counts from 1 { sign *= -1; } } return ( (sign < 0) ? -val : val ); } #else { arma_ignore(X); arma_ignore(make_copy); arma_ignore(tmp); arma_stop("det(): use of ATLAS or LAPACK needs to be enabled"); return eT(0); } #endif } //! immediate log determinant of a matrix using ATLAS or LAPACK template<typename eT, typename T1> inline bool auxlib::log_det(eT& out_val, typename get_pod_type<eT>::result& out_sign, const Base<eT,T1>& X) { arma_extra_debug_sigprint(); typedef typename get_pod_type<eT>::result T; #if defined(ARMA_USE_ATLAS) { Mat<eT> tmp(X.get_ref()); arma_debug_check( (tmp.is_square() == false), "log_det(): given matrix is not square" ); if(tmp.is_empty()) { out_val = eT(0); out_sign = T(1); return true; } podarray<int> ipiv(tmp.n_rows); const int info = atlas::clapack_getrf(atlas::CblasColMajor, tmp.n_rows, tmp.n_cols, tmp.memptr(), tmp.n_rows, ipiv.memptr()); // on output tmp appears to be L+U_alt, where U_alt is U with the main diagonal set to zero sword sign = (is_complex<eT>::value == false) ? ( (access::tmp_real( tmp.at(0,0) ) < T(0)) ? -1 : +1 ) : +1; eT val = (is_complex<eT>::value == false) ? std::log( (access::tmp_real( tmp.at(0,0) ) < T(0)) ? tmp.at(0,0)*T(-1) : tmp.at(0,0) ) : std::log( tmp.at(0,0) ); for(uword i=1; i < tmp.n_rows; ++i) { const eT x = tmp.at(i,i); sign *= (is_complex<eT>::value == false) ? ( (access::tmp_real(x) < T(0)) ? -1 : +1 ) : +1; val += (is_complex<eT>::value == false) ? std::log( (access::tmp_real(x) < T(0)) ? x*T(-1) : x ) : std::log(x); } for(uword i=0; i < tmp.n_rows; ++i) { if( int(i) != ipiv.mem[i] ) // NOTE: no adjustment required, as the clapack version of getrf() assumes counting from 0 { sign *= -1; } } out_val = val; out_sign = T(sign); return (info == 0); } #elif defined(ARMA_USE_LAPACK) { Mat<eT> tmp(X.get_ref()); arma_debug_check( (tmp.is_square() == false), "log_det(): given matrix is not square" ); if(tmp.is_empty()) { out_val = eT(0); out_sign = T(1); return true; } podarray<blas_int> ipiv(tmp.n_rows); blas_int info = 0; blas_int n_rows = blas_int(tmp.n_rows); blas_int n_cols = blas_int(tmp.n_cols); lapack::getrf(&n_rows, &n_cols, tmp.memptr(), &n_rows, ipiv.memptr(), &info); // on output tmp appears to be L+U_alt, where U_alt is U with the main diagonal set to zero sword sign = (is_complex<eT>::value == false) ? ( (access::tmp_real( tmp.at(0,0) ) < T(0)) ? -1 : +1 ) : +1; eT val = (is_complex<eT>::value == false) ? std::log( (access::tmp_real( tmp.at(0,0) ) < T(0)) ? tmp.at(0,0)*T(-1) : tmp.at(0,0) ) : std::log( tmp.at(0,0) ); for(uword i=1; i < tmp.n_rows; ++i) { const eT x = tmp.at(i,i); sign *= (is_complex<eT>::value == false) ? ( (access::tmp_real(x) < T(0)) ? -1 : +1 ) : +1; val += (is_complex<eT>::value == false) ? std::log( (access::tmp_real(x) < T(0)) ? x*T(-1) : x ) : std::log(x); } for(uword i=0; i < tmp.n_rows; ++i) { if( blas_int(i) != (ipiv.mem[i] - 1) ) // NOTE: adjustment of -1 is required as Fortran counts from 1 { sign *= -1; } } out_val = val; out_sign = T(sign); return (info == 0); } #else { arma_ignore(X); out_val = eT(0); out_sign = T(0); arma_stop("log_det(): use of ATLAS or LAPACK needs to be enabled"); return false; } #endif } //! immediate LU decomposition of a matrix using ATLAS or LAPACK template<typename eT, typename T1> inline bool auxlib::lu(Mat<eT>& L, Mat<eT>& U, podarray<blas_int>& ipiv, const Base<eT,T1>& X) { arma_extra_debug_sigprint(); U = X.get_ref(); const uword U_n_rows = U.n_rows; const uword U_n_cols = U.n_cols; if(U.is_empty()) { L.set_size(U_n_rows, 0); U.set_size(0, U_n_cols); ipiv.reset(); return true; } #if defined(ARMA_USE_ATLAS) || defined(ARMA_USE_LAPACK) { bool status; #if defined(ARMA_USE_ATLAS) { ipiv.set_size( (std::min)(U_n_rows, U_n_cols) ); int info = atlas::clapack_getrf(atlas::CblasColMajor, U_n_rows, U_n_cols, U.memptr(), U_n_rows, ipiv.memptr()); status = (info == 0); } #elif defined(ARMA_USE_LAPACK) { ipiv.set_size( (std::min)(U_n_rows, U_n_cols) ); blas_int info = 0; blas_int n_rows = U_n_rows; blas_int n_cols = U_n_cols; lapack::getrf(&n_rows, &n_cols, U.memptr(), &n_rows, ipiv.memptr(), &info); // take into account that Fortran counts from 1 arrayops::inplace_minus(ipiv.memptr(), blas_int(1), ipiv.n_elem); status = (info == 0); } #endif L.copy_size(U); for(uword col=0; col < U_n_cols; ++col) { for(uword row=0; (row < col) && (row < U_n_rows); ++row) { L.at(row,col) = eT(0); } if( L.in_range(col,col) == true ) { L.at(col,col) = eT(1); } for(uword row = (col+1); row < U_n_rows; ++row) { L.at(row,col) = U.at(row,col); U.at(row,col) = eT(0); } } return status; } #else { arma_stop("lu(): use of ATLAS or LAPACK needs to be enabled"); return false; } #endif } template<typename eT, typename T1> inline bool auxlib::lu(Mat<eT>& L, Mat<eT>& U, Mat<eT>& P, const Base<eT,T1>& X) { arma_extra_debug_sigprint(); podarray<blas_int> ipiv1; const bool status = auxlib::lu(L, U, ipiv1, X); if(status == true) { if(U.is_empty()) { // L and U have been already set to the correct empty matrices P.eye(L.n_rows, L.n_rows); return true; } const uword n = ipiv1.n_elem; const uword P_rows = U.n_rows; podarray<blas_int> ipiv2(P_rows); const blas_int* ipiv1_mem = ipiv1.memptr(); blas_int* ipiv2_mem = ipiv2.memptr(); for(uword i=0; i<P_rows; ++i) { ipiv2_mem[i] = blas_int(i); } for(uword i=0; i<n; ++i) { const uword k = static_cast<uword>(ipiv1_mem[i]); if( ipiv2_mem[i] != ipiv2_mem[k] ) { std::swap( ipiv2_mem[i], ipiv2_mem[k] ); } } P.zeros(P_rows, P_rows); for(uword row=0; row<P_rows; ++row) { P.at(row, static_cast<uword>(ipiv2_mem[row])) = eT(1); } if(L.n_cols > U.n_rows) { L.shed_cols(U.n_rows, L.n_cols-1); } if(U.n_rows > L.n_cols) { U.shed_rows(L.n_cols, U.n_rows-1); } } return status; } template<typename eT, typename T1> inline bool auxlib::lu(Mat<eT>& L, Mat<eT>& U, const Base<eT,T1>& X) { arma_extra_debug_sigprint(); podarray<blas_int> ipiv1; const bool status = auxlib::lu(L, U, ipiv1, X); if(status == true) { if(U.is_empty()) { // L and U have been already set to the correct empty matrices return true; } const uword n = ipiv1.n_elem; const uword P_rows = U.n_rows; podarray<blas_int> ipiv2(P_rows); const blas_int* ipiv1_mem = ipiv1.memptr(); blas_int* ipiv2_mem = ipiv2.memptr(); for(uword i=0; i<P_rows; ++i) { ipiv2_mem[i] = blas_int(i); } for(uword i=0; i<n; ++i) { const uword k = static_cast<uword>(ipiv1_mem[i]); if( ipiv2_mem[i] != ipiv2_mem[k] ) { std::swap( ipiv2_mem[i], ipiv2_mem[k] ); L.swap_rows( static_cast<uword>(ipiv2_mem[i]), static_cast<uword>(ipiv2_mem[k]) ); } } if(L.n_cols > U.n_rows) { L.shed_cols(U.n_rows, L.n_cols-1); } if(U.n_rows > L.n_cols) { U.shed_rows(L.n_cols, U.n_rows-1); } } return status; } //! immediate eigenvalues of a symmetric real matrix using LAPACK template<typename eT, typename T1> inline bool auxlib::eig_sym(Col<eT>& eigval, const Base<eT,T1>& X) { arma_extra_debug_sigprint(); #if defined(ARMA_USE_LAPACK) { Mat<eT> A(X.get_ref()); arma_debug_check( (A.is_square() == false), "eig_sym(): given matrix is not square"); if(A.is_empty()) { eigval.reset(); return true; } eigval.set_size(A.n_rows); char jobz = 'N'; char uplo = 'U'; blas_int N = blas_int(A.n_rows); blas_int lwork = 3 * ( (std::max)(blas_int(1), 3*N-1) ); blas_int info = 0; podarray<eT> work( static_cast<uword>(lwork) ); lapack::syev(&jobz, &uplo, &N, A.memptr(), &N, eigval.memptr(), work.memptr(), &lwork, &info); return (info == 0); } #else { arma_ignore(eigval); arma_ignore(X); arma_stop("eig_sym(): use of LAPACK needs to be enabled"); return false; } #endif } //! immediate eigenvalues of a hermitian complex matrix using LAPACK template<typename T, typename T1> inline bool auxlib::eig_sym(Col<T>& eigval, const Base<std::complex<T>,T1>& X) { arma_extra_debug_sigprint(); #if defined(ARMA_USE_LAPACK) { typedef typename std::complex<T> eT; Mat<eT> A(X.get_ref()); arma_debug_check( (A.is_square() == false), "eig_sym(): given matrix is not square"); if(A.is_empty()) { eigval.reset(); return true; } eigval.set_size(A.n_rows); char jobz = 'N'; char uplo = 'U'; blas_int N = blas_int(A.n_rows); blas_int lwork = 3 * ( (std::max)(blas_int(1), 2*N-1) ); blas_int info = 0; podarray<eT> work( static_cast<uword>(lwork) ); podarray<T> rwork( static_cast<uword>( (std::max)(blas_int(1), 3*N-2) ) ); arma_extra_debug_print("lapack::heev()"); lapack::heev(&jobz, &uplo, &N, A.memptr(), &N, eigval.memptr(), work.memptr(), &lwork, rwork.memptr(), &info); return (info == 0); } #else { arma_ignore(eigval); arma_ignore(X); arma_stop("eig_sym(): use of LAPACK needs to be enabled"); return false; } #endif } //! immediate eigenvalues and eigenvectors of a symmetric real matrix using LAPACK template<typename eT, typename T1> inline bool auxlib::eig_sym(Col<eT>& eigval, Mat<eT>& eigvec, const Base<eT,T1>& X) { arma_extra_debug_sigprint(); #if defined(ARMA_USE_LAPACK) { eigvec = X.get_ref(); arma_debug_check( (eigvec.is_square() == false), "eig_sym(): given matrix is not square" ); if(eigvec.is_empty()) { eigval.reset(); eigvec.reset(); return true; } eigval.set_size(eigvec.n_rows); char jobz = 'V'; char uplo = 'U'; blas_int N = blas_int(eigvec.n_rows); blas_int lwork = 3 * ( (std::max)(blas_int(1), 3*N-1) ); blas_int info = 0; podarray<eT> work( static_cast<uword>(lwork) ); lapack::syev(&jobz, &uplo, &N, eigvec.memptr(), &N, eigval.memptr(), work.memptr(), &lwork, &info); return (info == 0); } #else { arma_ignore(eigval); arma_ignore(eigvec); arma_ignore(X); arma_stop("eig_sym(): use of LAPACK needs to be enabled"); return false; } #endif } //! immediate eigenvalues and eigenvectors of a hermitian complex matrix using LAPACK template<typename T, typename T1> inline bool auxlib::eig_sym(Col<T>& eigval, Mat< std::complex<T> >& eigvec, const Base<std::complex<T>,T1>& X) { arma_extra_debug_sigprint(); #if defined(ARMA_USE_LAPACK) { typedef typename std::complex<T> eT; eigvec = X.get_ref(); arma_debug_check( (eigvec.is_square() == false), "eig_sym(): given matrix is not square" ); if(eigvec.is_empty()) { eigval.reset(); eigvec.reset(); return true; } eigval.set_size(eigvec.n_rows); char jobz = 'V'; char uplo = 'U'; blas_int N = blas_int(eigvec.n_rows); blas_int lwork = 3 * ( (std::max)(blas_int(1), 2*N-1) ); blas_int info = 0; podarray<eT> work( static_cast<uword>(lwork) ); podarray<T> rwork( static_cast<uword>((std::max)(blas_int(1), 3*N-2)) ); arma_extra_debug_print("lapack::heev()"); lapack::heev(&jobz, &uplo, &N, eigvec.memptr(), &N, eigval.memptr(), work.memptr(), &lwork, rwork.memptr(), &info); return (info == 0); } #else { arma_ignore(eigval); arma_ignore(eigvec); arma_ignore(X); arma_stop("eig_sym(): use of LAPACK needs to be enabled"); return false; } #endif } //! immediate eigenvalues and eigenvectors of a symmetric real matrix using LAPACK (divide and conquer algorithm) template<typename eT, typename T1> inline bool auxlib::eig_sym_dc(Col<eT>& eigval, Mat<eT>& eigvec, const Base<eT,T1>& X) { arma_extra_debug_sigprint(); #if defined(ARMA_USE_LAPACK) { eigvec = X.get_ref(); arma_debug_check( (eigvec.is_square() == false), "eig_sym(): given matrix is not square" ); if(eigvec.is_empty()) { eigval.reset(); eigvec.reset(); return true; } eigval.set_size(eigvec.n_rows); char jobz = 'V'; char uplo = 'U'; blas_int N = blas_int(eigvec.n_rows); blas_int lwork = 3 * (1 + 6*N + 2*(N*N)); blas_int liwork = 3 * (3 + 5*N + 2); blas_int info = 0; podarray<eT> work( static_cast<uword>( lwork) ); podarray<blas_int> iwork( static_cast<uword>(liwork) ); arma_extra_debug_print("lapack::syevd()"); lapack::syevd(&jobz, &uplo, &N, eigvec.memptr(), &N, eigval.memptr(), work.memptr(), &lwork, iwork.memptr(), &liwork, &info); return (info == 0); } #else { arma_ignore(eigval); arma_ignore(eigvec); arma_ignore(X); arma_stop("eig_sym(): use of LAPACK needs to be enabled"); return false; } #endif } //! immediate eigenvalues and eigenvectors of a hermitian complex matrix using LAPACK (divide and conquer algorithm) template<typename T, typename T1> inline bool auxlib::eig_sym_dc(Col<T>& eigval, Mat< std::complex<T> >& eigvec, const Base<std::complex<T>,T1>& X) { arma_extra_debug_sigprint(); #if defined(ARMA_USE_LAPACK) { typedef typename std::complex<T> eT; eigvec = X.get_ref(); arma_debug_check( (eigvec.is_square() == false), "eig_sym(): given matrix is not square" ); if(eigvec.is_empty()) { eigval.reset(); eigvec.reset(); return true; } eigval.set_size(eigvec.n_rows); char jobz = 'V'; char uplo = 'U'; blas_int N = blas_int(eigvec.n_rows); blas_int lwork = 3 * (2*N + N*N); blas_int lrwork = 3 * (1 + 5*N + 2*(N*N)); blas_int liwork = 3 * (3 + 5*N); blas_int info = 0; podarray<eT> work( static_cast<uword>(lwork) ); podarray<T> rwork( static_cast<uword>(lrwork) ); podarray<blas_int> iwork( static_cast<uword>(liwork) ); arma_extra_debug_print("lapack::heevd()"); lapack::heevd(&jobz, &uplo, &N, eigvec.memptr(), &N, eigval.memptr(), work.memptr(), &lwork, rwork.memptr(), &lrwork, iwork.memptr(), &liwork, &info); return (info == 0); } #else { arma_ignore(eigval); arma_ignore(eigvec); arma_ignore(X); arma_stop("eig_sym(): use of LAPACK needs to be enabled"); return false; } #endif } //! Eigenvalues and eigenvectors of a general square real matrix using LAPACK. //! The argument 'side' specifies which eigenvectors should be calculated //! (see code for mode details). template<typename T, typename T1> inline bool auxlib::eig_gen ( Col< std::complex<T> >& eigval, Mat<T>& l_eigvec, Mat<T>& r_eigvec, const Base<T,T1>& X, const char side ) { arma_extra_debug_sigprint(); #if defined(ARMA_USE_LAPACK) { char jobvl; char jobvr; switch(side) { case 'l': // left jobvl = 'V'; jobvr = 'N'; break; case 'r': // right jobvl = 'N'; jobvr = 'V'; break; case 'b': // both jobvl = 'V'; jobvr = 'V'; break; case 'n': // neither jobvl = 'N'; jobvr = 'N'; break; default: arma_stop("eig_gen(): parameter 'side' is invalid"); return false; } Mat<T> A(X.get_ref()); arma_debug_check( (A.is_square() == false), "eig_gen(): given matrix is not square" ); if(A.is_empty()) { eigval.reset(); l_eigvec.reset(); r_eigvec.reset(); return true; } const uword A_n_rows = A.n_rows; eigval.set_size(A_n_rows); l_eigvec.set_size(A_n_rows, A_n_rows); r_eigvec.set_size(A_n_rows, A_n_rows); blas_int N = blas_int(A_n_rows); blas_int lwork = 3 * ( (std::max)(blas_int(1), 4*N) ); blas_int info = 0; podarray<T> work( static_cast<uword>(lwork) ); podarray<T> wr(A_n_rows); podarray<T> wi(A_n_rows); arma_extra_debug_print("lapack::geev()"); lapack::geev(&jobvl, &jobvr, &N, A.memptr(), &N, wr.memptr(), wi.memptr(), l_eigvec.memptr(), &N, r_eigvec.memptr(), &N, work.memptr(), &lwork, &info); eigval.set_size(A_n_rows); for(uword i=0; i<A_n_rows; ++i) { eigval[i] = std::complex<T>(wr[i], wi[i]); } return (info == 0); } #else { arma_ignore(eigval); arma_ignore(l_eigvec); arma_ignore(r_eigvec); arma_ignore(X); arma_ignore(side); arma_stop("eig_gen(): use of LAPACK needs to be enabled"); return false; } #endif } //! Eigenvalues and eigenvectors of a general square complex matrix using LAPACK //! The argument 'side' specifies which eigenvectors should be calculated //! (see code for mode details). template<typename T, typename T1> inline bool auxlib::eig_gen ( Col< std::complex<T> >& eigval, Mat< std::complex<T> >& l_eigvec, Mat< std::complex<T> >& r_eigvec, const Base< std::complex<T>, T1 >& X, const char side ) { arma_extra_debug_sigprint(); #if defined(ARMA_USE_LAPACK) { typedef typename std::complex<T> eT; char jobvl; char jobvr; switch(side) { case 'l': // left jobvl = 'V'; jobvr = 'N'; break; case 'r': // right jobvl = 'N'; jobvr = 'V'; break; case 'b': // both jobvl = 'V'; jobvr = 'V'; break; case 'n': // neither jobvl = 'N'; jobvr = 'N'; break; default: arma_stop("eig_gen(): parameter 'side' is invalid"); return false; } Mat<eT> A(X.get_ref()); arma_debug_check( (A.is_square() == false), "eig_gen(): given matrix is not square" ); if(A.is_empty()) { eigval.reset(); l_eigvec.reset(); r_eigvec.reset(); return true; } const uword A_n_rows = A.n_rows; eigval.set_size(A_n_rows); l_eigvec.set_size(A_n_rows, A_n_rows); r_eigvec.set_size(A_n_rows, A_n_rows); blas_int N = blas_int(A_n_rows); blas_int lwork = 3 * ( (std::max)(blas_int(1), 2*N) ); blas_int info = 0; podarray<eT> work( static_cast<uword>(lwork) ); podarray<T> rwork( static_cast<uword>(2*N) ); arma_extra_debug_print("lapack::cx_geev()"); lapack::cx_geev(&jobvl, &jobvr, &N, A.memptr(), &N, eigval.memptr(), l_eigvec.memptr(), &N, r_eigvec.memptr(), &N, work.memptr(), &lwork, rwork.memptr(), &info); return (info == 0); } #else { arma_ignore(eigval); arma_ignore(l_eigvec); arma_ignore(r_eigvec); arma_ignore(X); arma_ignore(side); arma_stop("eig_gen(): use of LAPACK needs to be enabled"); return false; } #endif } template<typename eT, typename T1> inline bool auxlib::chol(Mat<eT>& out, const Base<eT,T1>& X) { arma_extra_debug_sigprint(); #if defined(ARMA_USE_LAPACK) { out = X.get_ref(); arma_debug_check( (out.is_square() == false), "chol(): given matrix is not square" ); if(out.is_empty()) { return true; } const uword out_n_rows = out.n_rows; char uplo = 'U'; blas_int n = out_n_rows; blas_int info = 0; lapack::potrf(&uplo, &n, out.memptr(), &n, &info); for(uword col=0; col<out_n_rows; ++col) { eT* colptr = out.colptr(col); for(uword row=(col+1); row < out_n_rows; ++row) { colptr[row] = eT(0); } } return (info == 0); } #else { arma_ignore(out); arma_ignore(X); arma_stop("chol(): use of LAPACK needs to be enabled"); return false; } #endif } template<typename eT, typename T1> inline bool auxlib::qr(Mat<eT>& Q, Mat<eT>& R, const Base<eT,T1>& X) { arma_extra_debug_sigprint(); #if defined(ARMA_USE_LAPACK) { R = X.get_ref(); const uword R_n_rows = R.n_rows; const uword R_n_cols = R.n_cols; if(R.is_empty()) { Q.eye(R_n_rows, R_n_rows); return true; } blas_int m = static_cast<blas_int>(R_n_rows); blas_int n = static_cast<blas_int>(R_n_cols); blas_int lwork = 0; blas_int lwork_min = (std::max)(blas_int(1), (std::max)(m,n)); // take into account requirements of geqrf() _and_ orgqr()/ungqr() blas_int k = (std::min)(m,n); blas_int info = 0; podarray<eT> tau( static_cast<uword>(k) ); eT work_query[2]; blas_int lwork_query = -1; lapack::geqrf(&m, &n, R.memptr(), &m, tau.memptr(), &work_query[0], &lwork_query, &info); if(info == 0) { const blas_int lwork_proposed = static_cast<blas_int>( access::tmp_real(work_query[0]) ); lwork = (lwork_proposed > lwork_min) ? lwork_proposed : lwork_min; } else { return false; } podarray<eT> work( static_cast<uword>(lwork) ); lapack::geqrf(&m, &n, R.memptr(), &m, tau.memptr(), work.memptr(), &lwork, &info); Q.set_size(R_n_rows, R_n_rows); arrayops::copy( Q.memptr(), R.memptr(), (std::min)(Q.n_elem, R.n_elem) ); // // construct R for(uword col=0; col < R_n_cols; ++col) { for(uword row=(col+1); row < R_n_rows; ++row) { R.at(row,col) = eT(0); } } if( (is_float<eT>::value == true) || (is_double<eT>::value == true) ) { lapack::orgqr(&m, &m, &k, Q.memptr(), &m, tau.memptr(), work.memptr(), &lwork, &info); } else if( (is_supported_complex_float<eT>::value == true) || (is_supported_complex_double<eT>::value == true) ) { lapack::ungqr(&m, &m, &k, Q.memptr(), &m, tau.memptr(), work.memptr(), &lwork, &info); } return (info == 0); } #else { arma_ignore(Q); arma_ignore(R); arma_ignore(X); arma_stop("qr(): use of LAPACK needs to be enabled"); return false; } #endif } template<typename eT, typename T1> inline bool auxlib::qr_econ(Mat<eT>& Q, Mat<eT>& R, const Base<eT,T1>& X) { arma_extra_debug_sigprint(); // This function implements a memory-efficient QR for a non-square X that has dimensions m x n. // This basically discards the basis for the null-space. // // if m <= n: (use standard routine) // Q[m,m]*R[m,n] = X[m,n] // geqrf Needs A[m,n]: Uses R // orgqr Needs A[m,m]: Uses Q // otherwise: (memory-efficient routine) // Q[m,n]*R[n,n] = X[m,n] // geqrf Needs A[m,n]: Uses Q // geqrf Needs A[m,n]: Uses Q #if defined(ARMA_USE_LAPACK) { if(is_Mat<T1>::value == true) { const unwrap<T1> tmp(X.get_ref()); const Mat<eT>& M = tmp.M; if(M.n_rows < M.n_cols) { return auxlib::qr(Q, R, X); } } Q = X.get_ref(); const uword Q_n_rows = Q.n_rows; const uword Q_n_cols = Q.n_cols; if( Q_n_rows <= Q_n_cols ) { return auxlib::qr(Q, R, Q); } if(Q.is_empty()) { Q.set_size(Q_n_rows, 0 ); R.set_size(0, Q_n_cols); return true; } blas_int m = static_cast<blas_int>(Q_n_rows); blas_int n = static_cast<blas_int>(Q_n_cols); blas_int lwork = 0; blas_int lwork_min = (std::max)(blas_int(1), (std::max)(m,n)); // take into account requirements of geqrf() _and_ orgqr()/ungqr() blas_int k = (std::min)(m,n); blas_int info = 0; podarray<eT> tau( static_cast<uword>(k) ); eT work_query[2]; blas_int lwork_query = -1; lapack::geqrf(&m, &n, Q.memptr(), &m, tau.memptr(), &work_query[0], &lwork_query, &info); if(info == 0) { const blas_int lwork_proposed = static_cast<blas_int>( access::tmp_real(work_query[0]) ); lwork = (lwork_proposed > lwork_min) ? lwork_proposed : lwork_min; } else { return false; } podarray<eT> work( static_cast<uword>(lwork) ); lapack::geqrf(&m, &n, Q.memptr(), &m, tau.memptr(), work.memptr(), &lwork, &info); // Q now has the elements on and above the diagonal of the array // contain the min(M,N)-by-N upper trapezoidal matrix Q // (Q is upper triangular if m >= n); // the elements below the diagonal, with the array TAU, // represent the orthogonal matrix Q as a product of min(m,n) elementary reflectors. R.set_size(Q_n_cols, Q_n_cols); // // construct R for(uword col=0; col < Q_n_cols; ++col) { for(uword row=0; row <= col; ++row) { R.at(row,col) = Q.at(row,col); } for(uword row=(col+1); row < Q_n_cols; ++row) { R.at(row,col) = eT(0); } } if( (is_float<eT>::value == true) || (is_double<eT>::value == true) ) { lapack::orgqr(&m, &n, &k, Q.memptr(), &m, tau.memptr(), work.memptr(), &lwork, &info); } else if( (is_supported_complex_float<eT>::value == true) || (is_supported_complex_double<eT>::value == true) ) { lapack::ungqr(&m, &n, &k, Q.memptr(), &m, tau.memptr(), work.memptr(), &lwork, &info); } return (info == 0); } #else { arma_ignore(Q); arma_ignore(R); arma_ignore(X); arma_stop("qr_econ(): use of LAPACK needs to be enabled"); return false; } #endif } template<typename eT, typename T1> inline bool auxlib::svd(Col<eT>& S, const Base<eT,T1>& X, uword& X_n_rows, uword& X_n_cols) { arma_extra_debug_sigprint(); #if defined(ARMA_USE_LAPACK) { Mat<eT> A(X.get_ref()); X_n_rows = A.n_rows; X_n_cols = A.n_cols; if(A.is_empty()) { S.reset(); return true; } Mat<eT> U(1, 1); Mat<eT> V(1, A.n_cols); char jobu = 'N'; char jobvt = 'N'; blas_int m = A.n_rows; blas_int n = A.n_cols; blas_int min_mn = (std::min)(m,n); blas_int lda = A.n_rows; blas_int ldu = U.n_rows; blas_int ldvt = V.n_rows; blas_int lwork = 0; blas_int lwork_min = (std::max)( blas_int(1), (std::max)( (3*min_mn + (std::max)(m,n)), 5*min_mn ) ); blas_int info = 0; S.set_size( static_cast<uword>(min_mn) ); eT work_query[2]; blas_int lwork_query = -1; lapack::gesvd<eT> ( &jobu, &jobvt, &m, &n, A.memptr(), &lda, S.memptr(), U.memptr(), &ldu, V.memptr(), &ldvt, &work_query[0], &lwork_query, &info ); if(info == 0) { const blas_int lwork_proposed = static_cast<blas_int>( work_query[0] ); lwork = (lwork_proposed > lwork_min) ? lwork_proposed : lwork_min; podarray<eT> work( static_cast<uword>(lwork) ); lapack::gesvd<eT> ( &jobu, &jobvt, &m, &n, A.memptr(), &lda, S.memptr(), U.memptr(), &ldu, V.memptr(), &ldvt, work.memptr(), &lwork, &info ); } return (info == 0); } #else { arma_ignore(S); arma_ignore(X); arma_ignore(X_n_rows); arma_ignore(X_n_cols); arma_stop("svd(): use of LAPACK needs to be enabled"); return false; } #endif } template<typename T, typename T1> inline bool auxlib::svd(Col<T>& S, const Base<std::complex<T>, T1>& X, uword& X_n_rows, uword& X_n_cols) { arma_extra_debug_sigprint(); #if defined(ARMA_USE_LAPACK) { typedef std::complex<T> eT; Mat<eT> A(X.get_ref()); X_n_rows = A.n_rows; X_n_cols = A.n_cols; if(A.is_empty()) { S.reset(); return true; } Mat<eT> U(1, 1); Mat<eT> V(1, A.n_cols); char jobu = 'N'; char jobvt = 'N'; blas_int m = A.n_rows; blas_int n = A.n_cols; blas_int min_mn = (std::min)(m,n); blas_int lda = A.n_rows; blas_int ldu = U.n_rows; blas_int ldvt = V.n_rows; blas_int lwork = 3 * ( (std::max)(blas_int(1), 2*min_mn+(std::max)(m,n) ) ); blas_int info = 0; S.set_size( static_cast<uword>(min_mn) ); podarray<eT> work( static_cast<uword>(lwork ) ); podarray< T> rwork( static_cast<uword>(5*min_mn) ); // let gesvd_() calculate the optimum size of the workspace blas_int lwork_tmp = -1; lapack::cx_gesvd<T> ( &jobu, &jobvt, &m, &n, A.memptr(), &lda, S.memptr(), U.memptr(), &ldu, V.memptr(), &ldvt, work.memptr(), &lwork_tmp, rwork.memptr(), &info ); if(info == 0) { blas_int proposed_lwork = static_cast<blas_int>(real(work[0])); if(proposed_lwork > lwork) { lwork = proposed_lwork; work.set_size( static_cast<uword>(lwork) ); } lapack::cx_gesvd<T> ( &jobu, &jobvt, &m, &n, A.memptr(), &lda, S.memptr(), U.memptr(), &ldu, V.memptr(), &ldvt, work.memptr(), &lwork, rwork.memptr(), &info ); } return (info == 0); } #else { arma_ignore(S); arma_ignore(X); arma_ignore(X_n_rows); arma_ignore(X_n_cols); arma_stop("svd(): use of LAPACK needs to be enabled"); return false; } #endif } template<typename eT, typename T1> inline bool auxlib::svd(Col<eT>& S, const Base<eT,T1>& X) { arma_extra_debug_sigprint(); uword junk; return auxlib::svd(S, X, junk, junk); } template<typename T, typename T1> inline bool auxlib::svd(Col<T>& S, const Base<std::complex<T>, T1>& X) { arma_extra_debug_sigprint(); uword junk; return auxlib::svd(S, X, junk, junk); } template<typename eT, typename T1> inline bool auxlib::svd(Mat<eT>& U, Col<eT>& S, Mat<eT>& V, const Base<eT,T1>& X) { arma_extra_debug_sigprint(); #if defined(ARMA_USE_LAPACK) { Mat<eT> A(X.get_ref()); if(A.is_empty()) { U.eye(A.n_rows, A.n_rows); S.reset(); V.eye(A.n_cols, A.n_cols); return true; } U.set_size(A.n_rows, A.n_rows); V.set_size(A.n_cols, A.n_cols); char jobu = 'A'; char jobvt = 'A'; blas_int m = blas_int(A.n_rows); blas_int n = blas_int(A.n_cols); blas_int min_mn = (std::min)(m,n); blas_int lda = blas_int(A.n_rows); blas_int ldu = blas_int(U.n_rows); blas_int ldvt = blas_int(V.n_rows); blas_int lwork_min = (std::max)( blas_int(1), (std::max)( (3*min_mn + (std::max)(m,n)), 5*min_mn ) ); blas_int lwork = 0; blas_int info = 0; S.set_size( static_cast<uword>(min_mn) ); // let gesvd_() calculate the optimum size of the workspace eT work_query[2]; blas_int lwork_query = -1; lapack::gesvd<eT> ( &jobu, &jobvt, &m, &n, A.memptr(), &lda, S.memptr(), U.memptr(), &ldu, V.memptr(), &ldvt, &work_query[0], &lwork_query, &info ); if(info == 0) { const blas_int lwork_proposed = static_cast<blas_int>( work_query[0] ); lwork = (lwork_proposed > lwork_min) ? lwork_proposed : lwork_min; podarray<eT> work( static_cast<uword>(lwork) ); lapack::gesvd<eT> ( &jobu, &jobvt, &m, &n, A.memptr(), &lda, S.memptr(), U.memptr(), &ldu, V.memptr(), &ldvt, work.memptr(), &lwork, &info ); op_strans::apply(V,V); // op_strans will work out that an in-place transpose can be done } return (info == 0); } #else { arma_ignore(U); arma_ignore(S); arma_ignore(V); arma_ignore(X); arma_stop("svd(): use of LAPACK needs to be enabled"); return false; } #endif } template<typename T, typename T1> inline bool auxlib::svd(Mat< std::complex<T> >& U, Col<T>& S, Mat< std::complex<T> >& V, const Base< std::complex<T>, T1>& X) { arma_extra_debug_sigprint(); #if defined(ARMA_USE_LAPACK) { typedef std::complex<T> eT; Mat<eT> A(X.get_ref()); if(A.is_empty()) { U.eye(A.n_rows, A.n_rows); S.reset(); V.eye(A.n_cols, A.n_cols); return true; } U.set_size(A.n_rows, A.n_rows); V.set_size(A.n_cols, A.n_cols); char jobu = 'A'; char jobvt = 'A'; blas_int m = blas_int(A.n_rows); blas_int n = blas_int(A.n_cols); blas_int min_mn = (std::min)(m,n); blas_int lda = blas_int(A.n_rows); blas_int ldu = blas_int(U.n_rows); blas_int ldvt = blas_int(V.n_rows); blas_int lwork = 3 * ( (std::max)(blas_int(1), 2*min_mn + (std::max)(m,n) ) ); blas_int info = 0; S.set_size( static_cast<uword>(min_mn) ); podarray<eT> work( static_cast<uword>(lwork ) ); podarray<T> rwork( static_cast<uword>(5*min_mn) ); // let gesvd_() calculate the optimum size of the workspace blas_int lwork_tmp = -1; lapack::cx_gesvd<T> ( &jobu, &jobvt, &m, &n, A.memptr(), &lda, S.memptr(), U.memptr(), &ldu, V.memptr(), &ldvt, work.memptr(), &lwork_tmp, rwork.memptr(), &info ); if(info == 0) { blas_int proposed_lwork = static_cast<blas_int>(real(work[0])); if(proposed_lwork > lwork) { lwork = proposed_lwork; work.set_size( static_cast<uword>(lwork) ); } lapack::cx_gesvd<T> ( &jobu, &jobvt, &m, &n, A.memptr(), &lda, S.memptr(), U.memptr(), &ldu, V.memptr(), &ldvt, work.memptr(), &lwork, rwork.memptr(), &info ); op_htrans::apply(V,V); // op_htrans will work out that an in-place transpose can be done } return (info == 0); } #else { arma_ignore(U); arma_ignore(S); arma_ignore(V); arma_ignore(X); arma_stop("svd(): use of LAPACK needs to be enabled"); return false; } #endif } template<typename eT, typename T1> inline bool auxlib::svd_econ(Mat<eT>& U, Col<eT>& S, Mat<eT>& V, const Base<eT,T1>& X, const char mode) { arma_extra_debug_sigprint(); #if defined(ARMA_USE_LAPACK) { Mat<eT> A(X.get_ref()); blas_int m = blas_int(A.n_rows); blas_int n = blas_int(A.n_cols); blas_int min_mn = (std::min)(m,n); blas_int lda = blas_int(A.n_rows); S.set_size( static_cast<uword>(min_mn) ); blas_int ldu = 0; blas_int ldvt = 0; char jobu; char jobvt; switch(mode) { case 'l': jobu = 'S'; jobvt = 'N'; ldu = m; ldvt = 1; U.set_size( static_cast<uword>(ldu), static_cast<uword>(min_mn) ); V.reset(); break; case 'r': jobu = 'N'; jobvt = 'S'; ldu = 1; ldvt = (std::min)(m,n); U.reset(); V.set_size( static_cast<uword>(ldvt), static_cast<uword>(n) ); break; case 'b': jobu = 'S'; jobvt = 'S'; ldu = m; ldvt = (std::min)(m,n); U.set_size( static_cast<uword>(ldu), static_cast<uword>(min_mn) ); V.set_size( static_cast<uword>(ldvt), static_cast<uword>(n ) ); break; default: U.reset(); S.reset(); V.reset(); return false; } if(A.is_empty()) { U.eye(); S.reset(); V.eye(); return true; } blas_int lwork = 3 * ( (std::max)(blas_int(1), (std::max)( (3*min_mn + (std::max)(m,n)), 5*min_mn ) ) ); blas_int info = 0; podarray<eT> work( static_cast<uword>(lwork) ); // let gesvd_() calculate the optimum size of the workspace blas_int lwork_tmp = -1; lapack::gesvd<eT> ( &jobu, &jobvt, &m, &n, A.memptr(), &lda, S.memptr(), U.memptr(), &ldu, V.memptr(), &ldvt, work.memptr(), &lwork_tmp, &info ); if(info == 0) { blas_int proposed_lwork = static_cast<blas_int>(work[0]); if(proposed_lwork > lwork) { lwork = proposed_lwork; work.set_size( static_cast<uword>(lwork) ); } lapack::gesvd<eT> ( &jobu, &jobvt, &m, &n, A.memptr(), &lda, S.memptr(), U.memptr(), &ldu, V.memptr(), &ldvt, work.memptr(), &lwork, &info ); op_strans::apply(V,V); // op_strans will work out that an in-place transpose can be done } return (info == 0); } #else { arma_ignore(U); arma_ignore(S); arma_ignore(V); arma_ignore(X); arma_ignore(mode); arma_stop("svd(): use of LAPACK needs to be enabled"); return false; } #endif } template<typename T, typename T1> inline bool auxlib::svd_econ(Mat< std::complex<T> >& U, Col<T>& S, Mat< std::complex<T> >& V, const Base< std::complex<T>, T1>& X, const char mode) { arma_extra_debug_sigprint(); #if defined(ARMA_USE_LAPACK) { typedef std::complex<T> eT; Mat<eT> A(X.get_ref()); blas_int m = blas_int(A.n_rows); blas_int n = blas_int(A.n_cols); blas_int min_mn = (std::min)(m,n); blas_int lda = blas_int(A.n_rows); S.set_size( static_cast<uword>(min_mn) ); blas_int ldu = 0; blas_int ldvt = 0; char jobu; char jobvt; switch(mode) { case 'l': jobu = 'S'; jobvt = 'N'; ldu = m; ldvt = 1; U.set_size( static_cast<uword>(ldu), static_cast<uword>(min_mn) ); V.reset(); break; case 'r': jobu = 'N'; jobvt = 'S'; ldu = 1; ldvt = (std::min)(m,n); U.reset(); V.set_size( static_cast<uword>(ldvt), static_cast<uword>(n) ); break; case 'b': jobu = 'S'; jobvt = 'S'; ldu = m; ldvt = (std::min)(m,n); U.set_size( static_cast<uword>(ldu), static_cast<uword>(min_mn) ); V.set_size( static_cast<uword>(ldvt), static_cast<uword>(n) ); break; default: U.reset(); S.reset(); V.reset(); return false; } if(A.is_empty()) { U.eye(); S.reset(); V.eye(); return true; } blas_int lwork = 3 * ( (std::max)(blas_int(1), (std::max)( (3*min_mn + (std::max)(m,n)), 5*min_mn ) ) ); blas_int info = 0; podarray<eT> work( static_cast<uword>(lwork ) ); podarray<T> rwork( static_cast<uword>(5*min_mn) ); // let gesvd_() calculate the optimum size of the workspace blas_int lwork_tmp = -1; lapack::cx_gesvd<T> ( &jobu, &jobvt, &m, &n, A.memptr(), &lda, S.memptr(), U.memptr(), &ldu, V.memptr(), &ldvt, work.memptr(), &lwork_tmp, rwork.memptr(), &info ); if(info == 0) { blas_int proposed_lwork = static_cast<blas_int>(real(work[0])); if(proposed_lwork > lwork) { lwork = proposed_lwork; work.set_size( static_cast<uword>(lwork) ); } lapack::cx_gesvd<T> ( &jobu, &jobvt, &m, &n, A.memptr(), &lda, S.memptr(), U.memptr(), &ldu, V.memptr(), &ldvt, work.memptr(), &lwork, rwork.memptr(), &info ); op_htrans::apply(V,V); // op_strans will work out that an in-place transpose can be done } return (info == 0); } #else { arma_ignore(U); arma_ignore(S); arma_ignore(V); arma_ignore(X); arma_ignore(mode); arma_stop("svd(): use of LAPACK needs to be enabled"); return false; } #endif } template<typename eT, typename T1> inline bool auxlib::svd_dc(Mat<eT>& U, Col<eT>& S, Mat<eT>& V, const Base<eT,T1>& X) { arma_extra_debug_sigprint(); #if defined(ARMA_USE_LAPACK) { Mat<eT> A(X.get_ref()); if(A.is_empty()) { U.eye(A.n_rows, A.n_rows); S.reset(); V.eye(A.n_cols, A.n_cols); return true; } U.set_size(A.n_rows, A.n_rows); V.set_size(A.n_cols, A.n_cols); char jobz = 'A'; blas_int m = blas_int(A.n_rows); blas_int n = blas_int(A.n_cols); blas_int min_mn = (std::min)(m,n); blas_int lda = blas_int(A.n_rows); blas_int ldu = blas_int(U.n_rows); blas_int ldvt = blas_int(V.n_rows); blas_int lwork = 3 * ( 3*min_mn*min_mn + (std::max)( (std::max)(m,n), 4*min_mn*min_mn + 4*min_mn ) ); blas_int info = 0; S.set_size( static_cast<uword>(min_mn) ); podarray<eT> work( static_cast<uword>(lwork ) ); podarray<blas_int> iwork( static_cast<uword>(8*min_mn) ); lapack::gesdd<eT> ( &jobz, &m, &n, A.memptr(), &lda, S.memptr(), U.memptr(), &ldu, V.memptr(), &ldvt, work.memptr(), &lwork, iwork.memptr(), &info ); op_strans::apply(V,V); // op_strans will work out that an in-place transpose can be done return (info == 0); } #else { arma_ignore(U); arma_ignore(S); arma_ignore(V); arma_ignore(X); arma_stop("svd(): use of LAPACK needs to be enabled"); return false; } #endif } template<typename T, typename T1> inline bool auxlib::svd_dc(Mat< std::complex<T> >& U, Col<T>& S, Mat< std::complex<T> >& V, const Base< std::complex<T>, T1>& X) { arma_extra_debug_sigprint(); #if defined(ARMA_USE_LAPACK) { typedef std::complex<T> eT; Mat<eT> A(X.get_ref()); if(A.is_empty()) { U.eye(A.n_rows, A.n_rows); S.reset(); V.eye(A.n_cols, A.n_cols); return true; } U.set_size(A.n_rows, A.n_rows); V.set_size(A.n_cols, A.n_cols); char jobz = 'A'; blas_int m = blas_int(A.n_rows); blas_int n = blas_int(A.n_cols); blas_int min_mn = (std::min)(m,n); blas_int lda = blas_int(A.n_rows); blas_int ldu = blas_int(U.n_rows); blas_int ldvt = blas_int(V.n_rows); blas_int lwork = 3 * (min_mn*min_mn + 2*min_mn + (std::max)(m,n)); blas_int info = 0; S.set_size( static_cast<uword>(min_mn) ); podarray<eT> work( static_cast<uword>(lwork ) ); podarray<T> rwork( static_cast<uword>(5*min_mn*min_mn + 7*min_mn) ); podarray<blas_int> iwork( static_cast<uword>(8*min_mn ) ); lapack::cx_gesdd<T> ( &jobz, &m, &n, A.memptr(), &lda, S.memptr(), U.memptr(), &ldu, V.memptr(), &ldvt, work.memptr(), &lwork, rwork.memptr(), iwork.memptr(), &info ); op_htrans::apply(V,V); // op_htrans will work out that an in-place transpose can be done return (info == 0); } #else { arma_ignore(U); arma_ignore(S); arma_ignore(V); arma_ignore(X); arma_stop("svd(): use of LAPACK needs to be enabled"); return false; } #endif } //! Solve a system of linear equations. //! Assumes that A.n_rows = A.n_cols and B.n_rows = A.n_rows template<typename eT, typename T1> inline bool auxlib::solve(Mat<eT>& out, Mat<eT>& A, const Base<eT,T1>& X, const bool slow) { arma_extra_debug_sigprint(); bool status = false; const uword A_n_rows = A.n_rows; if( (A_n_rows <= 4) && (slow == false) ) { Mat<eT> A_inv; status = auxlib::inv_noalias_tinymat(A_inv, A, A_n_rows); if(status == true) { const unwrap_check<T1> Y( X.get_ref(), out ); const Mat<eT>& B = Y.M; const uword B_n_rows = B.n_rows; const uword B_n_cols = B.n_cols; arma_debug_check( (A_n_rows != B_n_rows), "solve(): number of rows in the given objects must be the same" ); if(A.is_empty() || B.is_empty()) { out.zeros(A.n_cols, B_n_cols); return true; } out.set_size(A_n_rows, B_n_cols); gemm_emul<false,false,false,false>::apply(out, A_inv, B); return true; } } if( (A_n_rows > 4) || (status == false) ) { out = X.get_ref(); const uword B_n_rows = out.n_rows; const uword B_n_cols = out.n_cols; arma_debug_check( (A_n_rows != B_n_rows), "solve(): number of rows in the given objects must be the same" ); if(A.is_empty() || out.is_empty()) { out.zeros(A.n_cols, B_n_cols); return true; } #if defined(ARMA_USE_ATLAS) { podarray<int> ipiv(A_n_rows + 2); // +2 for paranoia: old versions of Atlas might be trashing memory int info = atlas::clapack_gesv<eT>(atlas::CblasColMajor, A_n_rows, B_n_cols, A.memptr(), A_n_rows, ipiv.memptr(), out.memptr(), A_n_rows); return (info == 0); } #elif defined(ARMA_USE_LAPACK) { blas_int n = blas_int(A_n_rows); // assuming A is square blas_int lda = blas_int(A_n_rows); blas_int ldb = blas_int(A_n_rows); blas_int nrhs = blas_int(B_n_cols); blas_int info = 0; podarray<blas_int> ipiv(A_n_rows + 2); // +2 for paranoia: some versions of Lapack might be trashing memory arma_extra_debug_print("lapack::gesv()"); lapack::gesv<eT>(&n, &nrhs, A.memptr(), &lda, ipiv.memptr(), out.memptr(), &ldb, &info); arma_extra_debug_print("lapack::gesv() -- finished"); return (info == 0); } #else { arma_stop("solve(): use of ATLAS or LAPACK needs to be enabled"); return false; } #endif } return true; } //! Solve an over-determined system. //! Assumes that A.n_rows > A.n_cols and B.n_rows = A.n_rows template<typename eT, typename T1> inline bool auxlib::solve_od(Mat<eT>& out, Mat<eT>& A, const Base<eT,T1>& X) { arma_extra_debug_sigprint(); #if defined(ARMA_USE_LAPACK) { Mat<eT> tmp = X.get_ref(); const uword A_n_rows = A.n_rows; const uword A_n_cols = A.n_cols; const uword B_n_rows = tmp.n_rows; const uword B_n_cols = tmp.n_cols; arma_debug_check( (A_n_rows != B_n_rows), "solve(): number of rows in the given objects must be the same" ); out.set_size(A_n_cols, B_n_cols); if(A.is_empty() || tmp.is_empty()) { out.zeros(); return true; } char trans = 'N'; blas_int m = blas_int(A_n_rows); blas_int n = blas_int(A_n_cols); blas_int lda = blas_int(A_n_rows); blas_int ldb = blas_int(A_n_rows); blas_int nrhs = blas_int(B_n_cols); blas_int lwork = 3 * ( (std::max)(blas_int(1), n + (std::max)(n, nrhs)) ); blas_int info = 0; podarray<eT> work( static_cast<uword>(lwork) ); // NOTE: the dgels() function in the lapack library supplied by ATLAS 3.6 seems to have problems arma_extra_debug_print("lapack::gels()"); lapack::gels<eT>( &trans, &m, &n, &nrhs, A.memptr(), &lda, tmp.memptr(), &ldb, work.memptr(), &lwork, &info ); arma_extra_debug_print("lapack::gels() -- finished"); for(uword col=0; col<B_n_cols; ++col) { arrayops::copy( out.colptr(col), tmp.colptr(col), A_n_cols ); } return (info == 0); } #else { arma_ignore(out); arma_ignore(A); arma_ignore(X); arma_stop("solve(): use of LAPACK needs to be enabled"); return false; } #endif } //! Solve an under-determined system. //! Assumes that A.n_rows < A.n_cols and B.n_rows = A.n_rows template<typename eT, typename T1> inline bool auxlib::solve_ud(Mat<eT>& out, Mat<eT>& A, const Base<eT,T1>& X) { arma_extra_debug_sigprint(); // TODO: this function provides the same results as Octave 3.4.2. // TODO: however, these results are different than Matlab 7.12.0.635. // TODO: figure out whether both Octave and Matlab are correct, or only one of them #if defined(ARMA_USE_LAPACK) { const unwrap<T1> Y( X.get_ref() ); const Mat<eT>& B = Y.M; const uword A_n_rows = A.n_rows; const uword A_n_cols = A.n_cols; const uword B_n_rows = B.n_rows; const uword B_n_cols = B.n_cols; arma_debug_check( (A_n_rows != B_n_rows), "solve(): number of rows in the given objects must be the same" ); // B could be an alias of "out", hence we need to check whether B is empty before setting the size of "out" if(A.is_empty() || B.is_empty()) { out.zeros(A_n_cols, B_n_cols); return true; } char trans = 'N'; blas_int m = blas_int(A_n_rows); blas_int n = blas_int(A_n_cols); blas_int lda = blas_int(A_n_rows); blas_int ldb = blas_int(A_n_cols); blas_int nrhs = blas_int(B_n_cols); blas_int lwork = 3 * ( (std::max)(blas_int(1), m + (std::max)(m,nrhs)) ); blas_int info = 0; Mat<eT> tmp(A_n_cols, B_n_cols); tmp.zeros(); for(uword col=0; col<B_n_cols; ++col) { eT* tmp_colmem = tmp.colptr(col); arrayops::copy( tmp_colmem, B.colptr(col), B_n_rows ); for(uword row=B_n_rows; row<A_n_cols; ++row) { tmp_colmem[row] = eT(0); } } podarray<eT> work( static_cast<uword>(lwork) ); // NOTE: the dgels() function in the lapack library supplied by ATLAS 3.6 seems to have problems arma_extra_debug_print("lapack::gels()"); lapack::gels<eT>( &trans, &m, &n, &nrhs, A.memptr(), &lda, tmp.memptr(), &ldb, work.memptr(), &lwork, &info ); arma_extra_debug_print("lapack::gels() -- finished"); out.set_size(A_n_cols, B_n_cols); for(uword col=0; col<B_n_cols; ++col) { arrayops::copy( out.colptr(col), tmp.colptr(col), A_n_cols ); } return (info == 0); } #else { arma_ignore(out); arma_ignore(A); arma_ignore(X); arma_stop("solve(): use of LAPACK needs to be enabled"); return false; } #endif } // // solve_tr template<typename eT> inline bool auxlib::solve_tr(Mat<eT>& out, const Mat<eT>& A, const Mat<eT>& B, const uword layout) { arma_extra_debug_sigprint(); #if defined(ARMA_USE_LAPACK) { if(A.is_empty() || B.is_empty()) { out.zeros(A.n_cols, B.n_cols); return true; } out = B; char uplo = (layout == 0) ? 'U' : 'L'; char trans = 'N'; char diag = 'N'; blas_int n = blas_int(A.n_rows); blas_int nrhs = blas_int(B.n_cols); blas_int info = 0; lapack::trtrs<eT>(&uplo, &trans, &diag, &n, &nrhs, A.memptr(), &n, out.memptr(), &n, &info); return (info == 0); } #else { arma_ignore(out); arma_ignore(A); arma_ignore(B); arma_ignore(layout); arma_stop("solve(): use of LAPACK needs to be enabled"); return false; } #endif } // // Schur decomposition template<typename eT> inline bool auxlib::schur_dec(Mat<eT>& Z, Mat<eT>& T, const Mat<eT>& A) { arma_extra_debug_sigprint(); #if defined(ARMA_USE_LAPACK) { arma_debug_check( (A.is_square() == false), "schur_dec(): given matrix is not square" ); if(A.is_empty()) { Z.reset(); T.reset(); return true; } const uword A_n_rows = A.n_rows; Z.set_size(A_n_rows, A_n_rows); T = A; char jobvs = 'V'; // get Schur vectors (Z) char sort = 'N'; // do not sort eigenvalues/vectors blas_int* select = 0; // pointer to sorting function blas_int n = blas_int(A_n_rows); blas_int sdim = 0; // output for sorting blas_int lwork = 3 * ( (std::max)(blas_int(1), 3*n) ); blas_int info = 0; podarray<eT> work( static_cast<uword>(lwork) ); podarray<blas_int> bwork(A_n_rows); podarray<eT> wr(A_n_rows); // output for eigenvalues podarray<eT> wi(A_n_rows); // output for eigenvalues lapack::gees(&jobvs, &sort, select, &n, T.memptr(), &n, &sdim, wr.memptr(), wi.memptr(), Z.memptr(), &n, work.memptr(), &lwork, bwork.memptr(), &info); return (info == 0); } #else { arma_ignore(Z); arma_ignore(T); arma_ignore(A); arma_stop("schur_dec(): use of LAPACK needs to be enabled"); return false; } #endif } template<typename cT> inline bool auxlib::schur_dec(Mat<std::complex<cT> >& Z, Mat<std::complex<cT> >& T, const Mat<std::complex<cT> >& A) { arma_extra_debug_sigprint(); #if defined(ARMA_USE_LAPACK) { arma_debug_check( (A.is_square() == false), "schur_dec(): matrix A is not square" ); if(A.is_empty()) { Z.reset(); T.reset(); return true; } typedef std::complex<cT> eT; const uword A_n_rows = A.n_rows; Z.set_size(A_n_rows, A_n_rows); T = A; char jobvs = 'V'; // get Schur vectors (Z) char sort = 'N'; // do not sort eigenvalues/vectors blas_int* select = 0; // pointer to sorting function blas_int n = blas_int(A_n_rows); blas_int sdim = 0; // output for sorting blas_int lwork = 3 * ( (std::max)(blas_int(1), 2*n) ); blas_int info = 0; podarray<eT> work( static_cast<uword>(lwork) ); podarray<blas_int> bwork(A_n_rows); podarray<eT> w(A_n_rows); // output for eigenvalues podarray<cT> rwork(A_n_rows); lapack::cx_gees(&jobvs, &sort, select, &n, T.memptr(), &n, &sdim, w.memptr(), Z.memptr(), &n, work.memptr(), &lwork, rwork.memptr(), bwork.memptr(), &info); return (info == 0); } #else { arma_ignore(Z); arma_ignore(T); arma_ignore(A); arma_stop("schur_dec(): use of LAPACK needs to be enabled"); return false; } #endif } // // syl (solution of the Sylvester equation AX + XB = C) template<typename eT> inline bool auxlib::syl(Mat<eT>& X, const Mat<eT>& A, const Mat<eT>& B, const Mat<eT>& C) { arma_extra_debug_sigprint(); arma_debug_check ( (A.is_square() == false) || (B.is_square() == false), "syl(): given matrix is not square" ); arma_debug_check ( (C.n_rows != A.n_rows) || (C.n_cols != B.n_cols), "syl(): matrices are not conformant" ); if(A.is_empty() || B.is_empty() || C.is_empty()) { X.reset(); return true; } #if defined(ARMA_USE_LAPACK) { Mat<eT> Z1, Z2, T1, T2; const bool status_sd1 = auxlib::schur_dec(Z1, T1, A); const bool status_sd2 = auxlib::schur_dec(Z2, T2, B); if( (status_sd1 == false) || (status_sd2 == false) ) { return false; } char trana = 'N'; char tranb = 'N'; blas_int isgn = +1; blas_int m = blas_int(T1.n_rows); blas_int n = blas_int(T2.n_cols); eT scale = eT(0); blas_int info = 0; Mat<eT> Y = trans(Z1) * C * Z2; lapack::trsyl<eT>(&trana, &tranb, &isgn, &m, &n, T1.memptr(), &m, T2.memptr(), &n, Y.memptr(), &m, &scale, &info); //Y /= scale; Y /= (-scale); X = Z1 * Y * trans(Z2); return (info >= 0); } #else { arma_stop("syl(): use of LAPACK needs to be enabled"); return false; } #endif } // // lyap (solution of the continuous Lyapunov equation AX + XA^H + Q = 0) template<typename eT> inline bool auxlib::lyap(Mat<eT>& X, const Mat<eT>& A, const Mat<eT>& Q) { arma_extra_debug_sigprint(); arma_debug_check( (A.is_square() == false), "lyap(): matrix A is not square"); arma_debug_check( (Q.is_square() == false), "lyap(): matrix Q is not square"); arma_debug_check( (A.n_rows != Q.n_rows), "lyap(): matrices A and Q have different dimensions"); Mat<eT> htransA; op_htrans::apply_noalias(htransA, A); const Mat<eT> mQ = -Q; return auxlib::syl(X, A, htransA, mQ); } // // dlyap (solution of the discrete Lyapunov equation AXA^H - X + Q = 0) template<typename eT> inline bool auxlib::dlyap(Mat<eT>& X, const Mat<eT>& A, const Mat<eT>& Q) { arma_extra_debug_sigprint(); arma_debug_check( (A.is_square() == false), "dlyap(): matrix A is not square"); arma_debug_check( (Q.is_square() == false), "dlyap(): matrix Q is not square"); arma_debug_check( (A.n_rows != Q.n_rows), "dlyap(): matrices A and Q have different dimensions"); const Col<eT> vecQ = reshape(Q, Q.n_elem, 1); const Mat<eT> M = eye< Mat<eT> >(Q.n_elem, Q.n_elem) - kron(conj(A), A); Col<eT> vecX; const bool status = solve(vecX, M, vecQ); if(status == true) { X = reshape(vecX, Q.n_rows, Q.n_cols); return true; } else { X.reset(); return false; } } //! @}