Mercurial > hg > segmenter-vamp-plugin
view armadillo-3.900.4/include/armadillo_bits/Mat_meat.hpp @ 84:55a047986812 tip
Update library URI so as not to be document-local
author | Chris Cannam |
---|---|
date | Wed, 22 Apr 2020 14:21:57 +0100 |
parents | 1ec0e2823891 |
children |
line wrap: on
line source
// Copyright (C) 2008-2013 NICTA (www.nicta.com.au) // Copyright (C) 2008-2013 Conrad Sanderson // Copyright (C) 2012 Ryan Curtin // // This Source Code Form is subject to the terms of the Mozilla Public // License, v. 2.0. If a copy of the MPL was not distributed with this // file, You can obtain one at http://mozilla.org/MPL/2.0/. //! \addtogroup Mat //! @{ template<typename eT> inline Mat<eT>::~Mat() { arma_extra_debug_sigprint_this(this); if(mem_state == 0) { if(n_elem > arma_config::mat_prealloc) { memory::release( access::rw(mem) ); } } if(arma_config::debug == true) { // try to expose buggy user code that accesses deleted objects access::rw(mem) = 0; } arma_type_check(( is_supported_elem_type<eT>::value == false )); } template<typename eT> inline Mat<eT>::Mat() : n_rows(0) , n_cols(0) , n_elem(0) , vec_state(0) , mem_state(0) , mem() { arma_extra_debug_sigprint_this(this); } //! construct the matrix to have user specified dimensions template<typename eT> inline Mat<eT>::Mat(const uword in_n_rows, const uword in_n_cols) : n_rows(in_n_rows) , n_cols(in_n_cols) , n_elem(in_n_rows*in_n_cols) , vec_state(0) , mem_state(0) , mem() { arma_extra_debug_sigprint_this(this); init_cold(); } //! constructor used by Row and Col classes template<typename eT> inline Mat<eT>::Mat(const arma_vec_indicator&, const uhword in_vec_state) : n_rows( (in_vec_state == 2) ? 1 : 0 ) , n_cols( (in_vec_state == 1) ? 1 : 0 ) , n_elem(0) , vec_state(in_vec_state) , mem_state(0) , mem() { arma_extra_debug_sigprint_this(this); } //! constructor used by Row and Col classes template<typename eT> inline Mat<eT>::Mat(const arma_vec_indicator&, const uword in_n_rows, const uword in_n_cols, const uhword in_vec_state) : n_rows(in_n_rows) , n_cols(in_n_cols) , n_elem(in_n_rows*in_n_cols) , vec_state(in_vec_state) , mem_state(0) , mem() { arma_extra_debug_sigprint_this(this); init_cold(); } template<typename eT> inline Mat<eT>::Mat(const arma_fixed_indicator&, const uword in_n_rows, const uword in_n_cols, const uhword in_vec_state, const eT* in_mem) : n_rows (in_n_rows) , n_cols (in_n_cols) , n_elem (in_n_rows*in_n_cols) , vec_state (in_vec_state) , mem_state (3) , mem (in_mem) { arma_extra_debug_sigprint_this(this); } template<typename eT> inline void Mat<eT>::init_cold() { arma_extra_debug_sigprint( arma_boost::format("n_rows = %d, n_cols = %d") % n_rows % n_cols ); // ensure that n_elem can hold the result of (n_rows * n_cols) arma_debug_check ( ( ( (n_rows > ARMA_MAX_UHWORD) || (n_cols > ARMA_MAX_UHWORD) ) ? ( (float(n_rows) * float(n_cols)) > float(ARMA_MAX_UWORD) ) : false ), "Mat::init(): requested size is too large" ); if(n_elem <= arma_config::mat_prealloc) { access::rw(mem) = mem_local; } else { arma_extra_debug_print("Mat::init(): allocating memory"); access::rw(mem) = memory::acquire<eT>(n_elem); arma_check_bad_alloc( (mem == 0), "Mat::init(): out of memory" ); } } //! internal matrix construction; if the requested size is small enough, memory from the stack is used. otherwise memory is allocated via 'new' template<typename eT> inline void Mat<eT>::init_warm(uword in_n_rows, uword in_n_cols) { arma_extra_debug_sigprint( arma_boost::format("in_n_rows = %d, in_n_cols = %d") % in_n_rows % in_n_cols ); if( (n_rows == in_n_rows) && (n_cols == in_n_cols) ) { return; } bool err_state = false; char* err_msg = 0; const uhword t_vec_state = vec_state; const uhword t_mem_state = mem_state; arma_debug_set_error ( err_state, err_msg, (t_mem_state == 3), "Mat::init(): size is fixed and hence cannot be changed" ); if(t_vec_state > 0) { if( (in_n_rows == 0) && (in_n_cols == 0) ) { if(t_vec_state == 1) { in_n_cols = 1; } else if(t_vec_state == 2) { in_n_rows = 1; } } else { arma_debug_set_error ( err_state, err_msg, ( ((t_vec_state == 1) && (in_n_cols != 1)) || ((t_vec_state == 2) && (in_n_rows != 1)) ), "Mat::init(): object is a row or column vector; requested size is not compatible" ); } } // ensure that n_elem can hold the result of (n_rows * n_cols) arma_debug_set_error ( err_state, err_msg, ( ( (in_n_rows > ARMA_MAX_UHWORD) || (in_n_cols > ARMA_MAX_UHWORD) ) ? ( (float(in_n_rows) * float(in_n_cols)) > float(ARMA_MAX_UWORD) ) : false ), "Mat::init(): requested size is too large" ); arma_debug_check(err_state, err_msg); const uword old_n_elem = n_elem; const uword new_n_elem = in_n_rows * in_n_cols; if(old_n_elem == new_n_elem) { arma_extra_debug_print("Mat::init(): reusing memory"); access::rw(n_rows) = in_n_rows; access::rw(n_cols) = in_n_cols; } else { arma_debug_check ( (t_mem_state == 2), "Mat::init(): mismatch between size of auxiliary memory and requested size" ); if(t_mem_state == 0) { if(old_n_elem > arma_config::mat_prealloc) { arma_extra_debug_print("Mat::init(): freeing memory"); memory::release( access::rw(mem) ); } } if(new_n_elem <= arma_config::mat_prealloc) { access::rw(mem) = mem_local; } else { arma_extra_debug_print("Mat::init(): allocating memory"); access::rw(mem) = memory::acquire<eT>(new_n_elem); arma_check_bad_alloc( (mem == 0), "Mat::init(): out of memory" ); } access::rw(n_rows) = in_n_rows; access::rw(n_cols) = in_n_cols; access::rw(n_elem) = new_n_elem; access::rw(mem_state) = 0; } } //! create the matrix from a textual description template<typename eT> inline Mat<eT>::Mat(const char* text) : n_rows(0) , n_cols(0) , n_elem(0) , vec_state(0) , mem_state(0) , mem() { arma_extra_debug_sigprint_this(this); init( std::string(text) ); } //! create the matrix from a textual description template<typename eT> inline const Mat<eT>& Mat<eT>::operator=(const char* text) { arma_extra_debug_sigprint(); init( std::string(text) ); return *this; } //! create the matrix from a textual description template<typename eT> inline Mat<eT>::Mat(const std::string& text) : n_rows(0) , n_cols(0) , n_elem(0) , vec_state(0) , mem_state(0) , mem() { arma_extra_debug_sigprint_this(this); init(text); } //! create the matrix from a textual description template<typename eT> inline const Mat<eT>& Mat<eT>::operator=(const std::string& text) { arma_extra_debug_sigprint(); init(text); return *this; } //! internal function to create the matrix from a textual description template<typename eT> inline void Mat<eT>::init(const std::string& text) { arma_extra_debug_sigprint(); // // work out the size uword t_n_rows = 0; uword t_n_cols = 0; bool t_n_cols_found = false; std::string token; std::string::size_type line_start = 0; std::string::size_type line_end = 0; while( line_start < text.length() ) { line_end = text.find(';', line_start); if(line_end == std::string::npos) line_end = text.length()-1; std::string::size_type line_len = line_end - line_start + 1; std::stringstream line_stream( text.substr(line_start,line_len) ); uword line_n_cols = 0; while(line_stream >> token) { ++line_n_cols; } if(line_n_cols > 0) { if(t_n_cols_found == false) { t_n_cols = line_n_cols; t_n_cols_found = true; } else arma_check( (line_n_cols != t_n_cols), "Mat::init(): inconsistent number of columns in given string"); ++t_n_rows; } line_start = line_end+1; } Mat<eT>& x = *this; x.set_size(t_n_rows, t_n_cols); line_start = 0; line_end = 0; uword urow = 0; while( line_start < text.length() ) { line_end = text.find(';', line_start); if(line_end == std::string::npos) line_end = text.length()-1; std::string::size_type line_len = line_end - line_start + 1; std::stringstream line_stream( text.substr(line_start,line_len) ); // uword ucol = 0; // while(line_stream >> token) // { // x.at(urow,ucol) = strtod(token.c_str(), 0); // ++ucol; // } uword ucol = 0; eT val; while(line_stream >> val) { x.at(urow,ucol) = val; ++ucol; } ++urow; line_start = line_end+1; } } //! create the matrix from std::vector template<typename eT> inline Mat<eT>::Mat(const std::vector<eT>& x) : n_rows(uword(x.size())) , n_cols(1) , n_elem(uword(x.size())) , vec_state(0) , mem_state(0) , mem() { arma_extra_debug_sigprint_this(this); init_cold(); if(n_elem > 0) { arrayops::copy( memptr(), &(x[0]), n_elem ); } } //! create the matrix from std::vector template<typename eT> inline const Mat<eT>& Mat<eT>::operator=(const std::vector<eT>& x) { arma_extra_debug_sigprint(); init_warm(uword(x.size()), 1); if(x.size() > 0) { arrayops::copy( memptr(), &(x[0]), uword(x.size()) ); } return *this; } #if defined(ARMA_USE_CXX11) template<typename eT> inline Mat<eT>::Mat(const std::initializer_list<eT>& list) : n_rows(0) , n_cols(0) , n_elem(0) , vec_state(0) , mem_state(0) , mem() { arma_extra_debug_sigprint_this(this); init(list); } template<typename eT> inline const Mat<eT>& Mat<eT>::operator=(const std::initializer_list<eT>& list) { arma_extra_debug_sigprint(); init(list); return *this; } #endif //! Set the matrix to be equal to the specified scalar. //! NOTE: the size of the matrix will be 1x1 template<typename eT> arma_inline const Mat<eT>& Mat<eT>::operator=(const eT val) { arma_extra_debug_sigprint(); init_warm(1,1); access::rw(mem[0]) = val; return *this; } //! In-place addition of a scalar to all elements of the matrix template<typename eT> arma_inline const Mat<eT>& Mat<eT>::operator+=(const eT val) { arma_extra_debug_sigprint(); arrayops::inplace_plus( memptr(), val, n_elem ); return *this; } //! In-place subtraction of a scalar from all elements of the matrix template<typename eT> arma_inline const Mat<eT>& Mat<eT>::operator-=(const eT val) { arma_extra_debug_sigprint(); arrayops::inplace_minus( memptr(), val, n_elem ); return *this; } //! In-place multiplication of all elements of the matrix with a scalar template<typename eT> arma_inline const Mat<eT>& Mat<eT>::operator*=(const eT val) { arma_extra_debug_sigprint(); arrayops::inplace_mul( memptr(), val, n_elem ); return *this; } //! In-place division of all elements of the matrix with a scalar template<typename eT> arma_inline const Mat<eT>& Mat<eT>::operator/=(const eT val) { arma_extra_debug_sigprint(); arrayops::inplace_div( memptr(), val, n_elem ); return *this; } //! construct a matrix from a given matrix template<typename eT> inline Mat<eT>::Mat(const Mat<eT>& in_mat) : n_rows(in_mat.n_rows) , n_cols(in_mat.n_cols) , n_elem(in_mat.n_elem) , vec_state(0) , mem_state(0) , mem() { arma_extra_debug_sigprint(arma_boost::format("this = %x in_mat = %x") % this % &in_mat); init_cold(); arrayops::copy( memptr(), in_mat.mem, in_mat.n_elem ); } //! construct a matrix from a given matrix template<typename eT> inline const Mat<eT>& Mat<eT>::operator=(const Mat<eT>& in_mat) { arma_extra_debug_sigprint(arma_boost::format("this = %x in_mat = %x") % this % &in_mat); if(this != &in_mat) { init_warm(in_mat.n_rows, in_mat.n_cols); arrayops::copy( memptr(), in_mat.mem, in_mat.n_elem ); } return *this; } #if defined(ARMA_USE_CXX11) template<typename eT> inline void Mat<eT>::init(const std::initializer_list<eT>& list) { arma_extra_debug_sigprint(); const uword N = list.size(); set_size(1, N); arrayops::copy( memptr(), list.begin(), N ); } #endif //! for constructing a complex matrix out of two non-complex matrices template<typename eT> template<typename T1, typename T2> inline void Mat<eT>::init ( const Base<typename Mat<eT>::pod_type, T1>& X, const Base<typename Mat<eT>::pod_type, T2>& Y ) { arma_extra_debug_sigprint(); typedef typename T1::elem_type T; arma_type_check(( is_complex<eT>::value == false )); //!< compile-time abort if eT isn't std::complex arma_type_check(( is_complex< T>::value == true )); //!< compile-time abort if T is std::complex arma_type_check(( is_same_type< std::complex<T>, eT >::value == false )); //!< compile-time abort if types are not compatible const Proxy<T1> PX(X.get_ref()); const Proxy<T2> PY(Y.get_ref()); arma_debug_assert_same_size(PX, PY, "Mat()"); const uword local_n_rows = PX.get_n_rows(); const uword local_n_cols = PX.get_n_cols(); init_warm(local_n_rows, local_n_cols); eT* out_mem = (*this).memptr(); const bool prefer_at_accessor = ( Proxy<T1>::prefer_at_accessor || Proxy<T2>::prefer_at_accessor ); if(prefer_at_accessor == false) { typedef typename Proxy<T1>::ea_type ea_type1; typedef typename Proxy<T2>::ea_type ea_type2; const uword N = n_elem; ea_type1 A = PX.get_ea(); ea_type2 B = PY.get_ea(); for(uword ii=0; ii < N; ++ii) { out_mem[ii] = std::complex<T>(A[ii], B[ii]); } } else { for(uword ucol=0; ucol < local_n_cols; ++ucol) for(uword urow=0; urow < local_n_rows; ++urow) { *out_mem = std::complex<T>(PX.at(urow,ucol), PY.at(urow,ucol)); out_mem++; } } } //! EXPERIMENTAL: swap the contents of this matrix, denoted as matrix A, with given matrix B template<typename eT> inline void Mat<eT>::swap(Mat<eT>& B) { Mat<eT>& A = (*this); arma_extra_debug_sigprint(arma_boost::format("A = %x B = %x") % &A % &B); arma_debug_check( (A.vec_state != B.vec_state), "Mat::swap(): incompatible object types" ); const uhword A_mem_state = A.mem_state; const uhword B_mem_state = B.mem_state; if( (A_mem_state == 0) && (B_mem_state == 0) ) { const uword A_n_elem = A.n_elem; const uword B_n_elem = B.n_elem; const bool A_use_local_mem = (A_n_elem <= arma_config::mat_prealloc); const bool B_use_local_mem = (B_n_elem <= arma_config::mat_prealloc); if( (A_use_local_mem == false) && (B_use_local_mem == false) ) { std::swap( access::rw(A.mem), access::rw(B.mem) ); } else if( (A_use_local_mem == true) && (B_use_local_mem == true) ) { const uword N = (std::max)(A_n_elem, B_n_elem); eT* A_mem = A.memptr(); eT* B_mem = B.memptr(); for(uword ii=0; ii < N; ++ii) { std::swap( A_mem[ii], B_mem[ii] ); } } else if( (A_use_local_mem == true) && (B_use_local_mem == false) ) { eT* A_mem_local = &(A.mem_local[0]); eT* B_mem_local = &(B.mem_local[0]); arrayops::copy(B_mem_local, A_mem_local, A_n_elem); access::rw(A.mem) = B.mem; access::rw(B.mem) = B_mem_local; } else if( (A_use_local_mem == false) && (B_use_local_mem == true) ) { eT* A_mem_local = &(A.mem_local[0]); eT* B_mem_local = &(B.mem_local[0]); arrayops::copy(A_mem_local, B_mem_local, B_n_elem); access::rw(B.mem) = A.mem; access::rw(A.mem) = A_mem_local; } std::swap( access::rw(A.n_rows), access::rw(B.n_rows) ); std::swap( access::rw(A.n_cols), access::rw(B.n_cols) ); std::swap( access::rw(A.n_elem), access::rw(B.n_elem) ); } else if( (A_mem_state == 3) && (B_mem_state == 3) ) { arma_debug_check( ((A.n_rows != B.n_rows) || (A.n_cols != B.n_cols)), "Mat::swap(): incompatible object types" ); const uword N = A.n_elem; eT* A_mem = A.memptr(); eT* B_mem = B.memptr(); for(uword ii=0; ii < N; ++ii) { std::swap(A_mem[ii], B_mem[ii]); } } else { arma_bad("Mat::swap(): incompatible object types"); } } //! try to steal the memory from a given matrix; //! if memory can't be stolen, copy the given matrix template<typename eT> inline void Mat<eT>::steal_mem(Mat<eT>& x) { arma_extra_debug_sigprint(); if(this != &x) { const uword x_n_rows = x.n_rows; const uword x_n_cols = x.n_cols; const uword x_n_elem = x.n_elem; const uword x_vec_state = x.vec_state; const uword x_mem_state = x.mem_state; const uword t_vec_state = vec_state; bool layout_ok = false; if(t_vec_state == x_vec_state) { layout_ok = true; } else { if( (t_vec_state == 1) && ( x_n_cols == 1) ) { layout_ok = true; } if( (t_vec_state == 2) && ( x_n_rows == 1) ) { layout_ok = true; } } if( (x_mem_state == 0) && (x_n_elem > arma_config::mat_prealloc) && (layout_ok == true) ) { reset(); // note: calling reset() also prevents fixed size matrices from changing size or using non-local memory access::rw(n_rows) = x_n_rows; access::rw(n_cols) = x_n_cols; access::rw(n_elem) = x_n_elem; access::rw(mem) = x.mem; access::rw(x.n_rows) = 0; access::rw(x.n_cols) = 0; access::rw(x.n_elem) = 0; access::rw(x.mem) = 0; } else { (*this).operator=(x); } } } //! construct a matrix from a given auxiliary array of eTs. //! if copy_aux_mem is true, new memory is allocated and the array is copied. //! if copy_aux_mem is false, the auxiliary array is used directly (without allocating memory and copying). //! the default is to copy the array. template<typename eT> inline Mat<eT>::Mat(eT* aux_mem, const uword aux_n_rows, const uword aux_n_cols, const bool copy_aux_mem, const bool strict) : n_rows ( aux_n_rows ) , n_cols ( aux_n_cols ) , n_elem ( aux_n_rows*aux_n_cols ) , vec_state( 0 ) , mem_state( copy_aux_mem ? 0 : ( strict ? 2 : 1 ) ) , mem ( copy_aux_mem ? 0 : aux_mem ) { arma_extra_debug_sigprint_this(this); if(copy_aux_mem == true) { init_cold(); arrayops::copy( memptr(), aux_mem, n_elem ); } } //! construct a matrix from a given auxiliary read-only array of eTs. //! the array is copied. template<typename eT> inline Mat<eT>::Mat(const eT* aux_mem, const uword aux_n_rows, const uword aux_n_cols) : n_rows(aux_n_rows) , n_cols(aux_n_cols) , n_elem(aux_n_rows*aux_n_cols) , vec_state(0) , mem_state(0) , mem() { arma_extra_debug_sigprint_this(this); init_cold(); arrayops::copy( memptr(), aux_mem, n_elem ); } //! DANGEROUS! Construct a temporary matrix, using auxiliary memory. //! This constructor is NOT intended for usage by user code. //! Its sole purpose is to be used by the Cube class. template<typename eT> inline Mat<eT>::Mat(const char junk, const eT* aux_mem, const uword aux_n_rows, const uword aux_n_cols) : n_rows (aux_n_rows ) , n_cols (aux_n_cols ) , n_elem (aux_n_rows*aux_n_cols) , vec_state(0 ) , mem_state(3 ) , mem (aux_mem ) { arma_extra_debug_sigprint_this(this); arma_ignore(junk); } //! in-place matrix addition template<typename eT> inline const Mat<eT>& Mat<eT>::operator+=(const Mat<eT>& m) { arma_extra_debug_sigprint(); arma_debug_assert_same_size(*this, m, "addition"); arrayops::inplace_plus( memptr(), m.memptr(), n_elem ); return *this; } //! in-place matrix subtraction template<typename eT> inline const Mat<eT>& Mat<eT>::operator-=(const Mat<eT>& m) { arma_extra_debug_sigprint(); arma_debug_assert_same_size(*this, m, "subtraction"); arrayops::inplace_minus( memptr(), m.memptr(), n_elem ); return *this; } //! in-place matrix multiplication template<typename eT> inline const Mat<eT>& Mat<eT>::operator*=(const Mat<eT>& m) { arma_extra_debug_sigprint(); glue_times::apply_inplace(*this, m); return *this; } //! in-place element-wise matrix multiplication template<typename eT> inline const Mat<eT>& Mat<eT>::operator%=(const Mat<eT>& m) { arma_extra_debug_sigprint(); arma_debug_assert_same_size(*this, m, "element-wise multiplication"); arrayops::inplace_mul( memptr(), m.memptr(), n_elem ); return *this; } //! in-place element-wise matrix division template<typename eT> inline const Mat<eT>& Mat<eT>::operator/=(const Mat<eT>& m) { arma_extra_debug_sigprint(); arma_debug_assert_same_size(*this, m, "element-wise division"); arrayops::inplace_div( memptr(), m.memptr(), n_elem ); return *this; } template<typename eT> template<typename T1> inline Mat<eT>::Mat(const BaseCube<eT,T1>& X) : n_rows(0) , n_cols(0) , n_elem(0) , vec_state(0) , mem_state(0) , mem() { arma_extra_debug_sigprint_this(this); (*this).operator=(X); } template<typename eT> template<typename T1> inline const Mat<eT>& Mat<eT>::operator=(const BaseCube<eT,T1>& X) { arma_extra_debug_sigprint(); Mat<eT>& out = *this; const unwrap_cube<T1> tmp(X.get_ref()); const Cube<eT>& in = tmp.M; arma_debug_assert_cube_as_mat(out, in, "copy into matrix", false); const uword in_n_rows = in.n_rows; const uword in_n_cols = in.n_cols; const uword in_n_slices = in.n_slices; const uword out_vec_state = out.vec_state; if(in_n_slices == 1) { out.set_size(in_n_rows, in_n_cols); for(uword ucol=0; ucol < in_n_cols; ++ucol) { arrayops::copy( out.colptr(ucol), in.slice_colptr(0, ucol), in_n_rows ); } } else { if(out_vec_state == 0) { if(in_n_cols == 1) { out.set_size(in_n_rows, in_n_slices); for(uword i=0; i < in_n_slices; ++i) { arrayops::copy( out.colptr(i), in.slice_colptr(i, 0), in_n_rows ); } } else if(in_n_rows == 1) { out.set_size(in_n_cols, in_n_slices); for(uword slice=0; slice < in_n_slices; ++slice) { eT* out_colptr = out.colptr(slice); uword i,j; for(i=0, j=1; j < in_n_cols; i+=2, j+=2) { const eT tmp_i = in.at(0, i, slice); const eT tmp_j = in.at(0, j, slice); out_colptr[i] = tmp_i; out_colptr[j] = tmp_j; } if(i < in_n_cols) { out_colptr[i] = in.at(0, i, slice); } } } } else { out.set_size(in_n_slices); eT* out_mem = out.memptr(); for(uword i=0; i<in_n_slices; ++i) { out_mem[i] = in.at(0, 0, i); } } } return *this; } template<typename eT> template<typename T1> inline const Mat<eT>& Mat<eT>::operator+=(const BaseCube<eT,T1>& X) { arma_extra_debug_sigprint(); Mat<eT>& out = *this; const unwrap_cube<T1> tmp(X.get_ref()); const Cube<eT>& in = tmp.M; arma_debug_assert_cube_as_mat(out, in, "addition", true); const uword in_n_rows = in.n_rows; const uword in_n_cols = in.n_cols; const uword in_n_slices = in.n_slices; const uword out_n_rows = out.n_rows; const uword out_n_cols = out.n_cols; const uword out_vec_state = out.vec_state; if(in_n_slices == 1) { for(uword ucol=0; ucol < in_n_cols; ++ucol) { arrayops::inplace_plus( out.colptr(ucol), in.slice_colptr(0, ucol), in_n_rows ); } } else { if(out_vec_state == 0) { if( (in_n_rows == out_n_rows) && (in_n_cols == 1) && (in_n_slices == out_n_cols) ) { for(uword i=0; i < in_n_slices; ++i) { arrayops::inplace_plus( out.colptr(i), in.slice_colptr(i, 0), in_n_rows ); } } else if( (in_n_rows == 1) && (in_n_cols == out_n_rows) && (in_n_slices == out_n_cols) ) { for(uword slice=0; slice < in_n_slices; ++slice) { eT* out_colptr = out.colptr(slice); uword i,j; for(i=0, j=1; j < in_n_cols; i+=2, j+=2) { const eT tmp_i = in.at(0, i, slice); const eT tmp_j = in.at(0, j, slice); out_colptr[i] += tmp_i; out_colptr[j] += tmp_j; } if(i < in_n_cols) { out_colptr[i] += in.at(0, i, slice); } } } } else { eT* out_mem = out.memptr(); for(uword i=0; i<in_n_slices; ++i) { out_mem[i] += in.at(0, 0, i); } } } return *this; } template<typename eT> template<typename T1> inline const Mat<eT>& Mat<eT>::operator-=(const BaseCube<eT,T1>& X) { arma_extra_debug_sigprint(); Mat<eT>& out = *this; const unwrap_cube<T1> tmp(X.get_ref()); const Cube<eT>& in = tmp.M; arma_debug_assert_cube_as_mat(out, in, "subtraction", true); const uword in_n_rows = in.n_rows; const uword in_n_cols = in.n_cols; const uword in_n_slices = in.n_slices; const uword out_n_rows = out.n_rows; const uword out_n_cols = out.n_cols; const uword out_vec_state = out.vec_state; if(in_n_slices == 1) { for(uword ucol=0; ucol < in_n_cols; ++ucol) { arrayops::inplace_minus( out.colptr(ucol), in.slice_colptr(0, ucol), in_n_rows ); } } else { if(out_vec_state == 0) { if( (in_n_rows == out_n_rows) && (in_n_cols == 1) && (in_n_slices == out_n_cols) ) { for(uword i=0; i < in_n_slices; ++i) { arrayops::inplace_minus( out.colptr(i), in.slice_colptr(i, 0), in_n_rows ); } } else if( (in_n_rows == 1) && (in_n_cols == out_n_rows) && (in_n_slices == out_n_cols) ) { for(uword slice=0; slice < in_n_slices; ++slice) { eT* out_colptr = out.colptr(slice); uword i,j; for(i=0, j=1; j < in_n_cols; i+=2, j+=2) { const eT tmp_i = in.at(0, i, slice); const eT tmp_j = in.at(0, j, slice); out_colptr[i] -= tmp_i; out_colptr[j] -= tmp_j; } if(i < in_n_cols) { out_colptr[i] -= in.at(0, i, slice); } } } } else { eT* out_mem = out.memptr(); for(uword i=0; i<in_n_slices; ++i) { out_mem[i] -= in.at(0, 0, i); } } } return *this; } template<typename eT> template<typename T1> inline const Mat<eT>& Mat<eT>::operator*=(const BaseCube<eT,T1>& X) { arma_extra_debug_sigprint(); const Mat<eT> B(X); (*this).operator*=(B); return *this; } template<typename eT> template<typename T1> inline const Mat<eT>& Mat<eT>::operator%=(const BaseCube<eT,T1>& X) { arma_extra_debug_sigprint(); Mat<eT>& out = *this; const unwrap_cube<T1> tmp(X.get_ref()); const Cube<eT>& in = tmp.M; arma_debug_assert_cube_as_mat(out, in, "element-wise multiplication", true); const uword in_n_rows = in.n_rows; const uword in_n_cols = in.n_cols; const uword in_n_slices = in.n_slices; const uword out_n_rows = out.n_rows; const uword out_n_cols = out.n_cols; const uword out_vec_state = out.vec_state; if(in_n_slices == 1) { for(uword ucol=0; ucol < in_n_cols; ++ucol) { arrayops::inplace_mul( out.colptr(ucol), in.slice_colptr(0, ucol), in_n_rows ); } } else { if(out_vec_state == 0) { if( (in_n_rows == out_n_rows) && (in_n_cols == 1) && (in_n_slices == out_n_cols) ) { for(uword i=0; i < in_n_slices; ++i) { arrayops::inplace_mul( out.colptr(i), in.slice_colptr(i, 0), in_n_rows ); } } else if( (in_n_rows == 1) && (in_n_cols == out_n_rows) && (in_n_slices == out_n_cols) ) { for(uword slice=0; slice < in_n_slices; ++slice) { eT* out_colptr = out.colptr(slice); uword i,j; for(i=0, j=1; j < in_n_cols; i+=2, j+=2) { const eT tmp_i = in.at(0, i, slice); const eT tmp_j = in.at(0, j, slice); out_colptr[i] *= tmp_i; out_colptr[j] *= tmp_j; } if(i < in_n_cols) { out_colptr[i] *= in.at(0, i, slice); } } } } else { eT* out_mem = out.memptr(); for(uword i=0; i<in_n_slices; ++i) { out_mem[i] *= in.at(0, 0, i); } } } return *this; } template<typename eT> template<typename T1> inline const Mat<eT>& Mat<eT>::operator/=(const BaseCube<eT,T1>& X) { arma_extra_debug_sigprint(); Mat<eT>& out = *this; const unwrap_cube<T1> tmp(X.get_ref()); const Cube<eT>& in = tmp.M; arma_debug_assert_cube_as_mat(out, in, "element-wise division", true); const uword in_n_rows = in.n_rows; const uword in_n_cols = in.n_cols; const uword in_n_slices = in.n_slices; const uword out_n_rows = out.n_rows; const uword out_n_cols = out.n_cols; const uword out_vec_state = out.vec_state; if(in_n_slices == 1) { for(uword ucol=0; ucol < in_n_cols; ++ucol) { arrayops::inplace_div( out.colptr(ucol), in.slice_colptr(0, ucol), in_n_rows ); } } else { if(out_vec_state == 0) { if( (in_n_rows == out_n_rows) && (in_n_cols == 1) && (in_n_slices == out_n_cols) ) { for(uword i=0; i < in_n_slices; ++i) { arrayops::inplace_div( out.colptr(i), in.slice_colptr(i, 0), in_n_rows ); } } else if( (in_n_rows == 1) && (in_n_cols == out_n_rows) && (in_n_slices == out_n_cols) ) { for(uword slice=0; slice < in_n_slices; ++slice) { eT* out_colptr = out.colptr(slice); uword i,j; for(i=0, j=1; j < in_n_cols; i+=2, j+=2) { const eT tmp_i = in.at(0, i, slice); const eT tmp_j = in.at(0, j, slice); out_colptr[i] /= tmp_i; out_colptr[j] /= tmp_j; } if(i < in_n_cols) { out_colptr[i] /= in.at(0, i, slice); } } } } else { eT* out_mem = out.memptr(); for(uword i=0; i<in_n_slices; ++i) { out_mem[i] /= in.at(0, 0, i); } } } return *this; } //! for constructing a complex matrix out of two non-complex matrices template<typename eT> template<typename T1, typename T2> inline Mat<eT>::Mat ( const Base<typename Mat<eT>::pod_type,T1>& A, const Base<typename Mat<eT>::pod_type,T2>& B ) : n_rows(0) , n_cols(0) , n_elem(0) , vec_state(0) , mem_state(0) , mem() { arma_extra_debug_sigprint_this(this); init(A,B); } //! construct a matrix from subview (e.g. construct a matrix from a delayed submatrix operation) template<typename eT> inline Mat<eT>::Mat(const subview<eT>& X) : n_rows(X.n_rows) , n_cols(X.n_cols) , n_elem(X.n_elem) , vec_state(0) , mem_state(0) , mem() { arma_extra_debug_sigprint_this(this); init_cold(); subview<eT>::extract(*this, X); } //! construct a matrix from subview (e.g. construct a matrix from a delayed submatrix operation) template<typename eT> inline const Mat<eT>& Mat<eT>::operator=(const subview<eT>& X) { arma_extra_debug_sigprint(); const bool alias = (this == &(X.m)); if(alias == false) { init_warm(X.n_rows, X.n_cols); subview<eT>::extract(*this, X); } else { Mat<eT> tmp(X); steal_mem(tmp); } return *this; } //! in-place matrix addition (using a submatrix on the right-hand-side) template<typename eT> inline const Mat<eT>& Mat<eT>::operator+=(const subview<eT>& X) { arma_extra_debug_sigprint(); subview<eT>::plus_inplace(*this, X); return *this; } //! in-place matrix subtraction (using a submatrix on the right-hand-side) template<typename eT> inline const Mat<eT>& Mat<eT>::operator-=(const subview<eT>& X) { arma_extra_debug_sigprint(); subview<eT>::minus_inplace(*this, X); return *this; } //! in-place matrix mutiplication (using a submatrix on the right-hand-side) template<typename eT> inline const Mat<eT>& Mat<eT>::operator*=(const subview<eT>& X) { arma_extra_debug_sigprint(); glue_times::apply_inplace(*this, X); return *this; } //! in-place element-wise matrix mutiplication (using a submatrix on the right-hand-side) template<typename eT> inline const Mat<eT>& Mat<eT>::operator%=(const subview<eT>& X) { arma_extra_debug_sigprint(); subview<eT>::schur_inplace(*this, X); return *this; } //! in-place element-wise matrix division (using a submatrix on the right-hand-side) template<typename eT> inline const Mat<eT>& Mat<eT>::operator/=(const subview<eT>& X) { arma_extra_debug_sigprint(); subview<eT>::div_inplace(*this, X); return *this; } template<typename eT> inline Mat<eT>::Mat(const subview_row_strans<eT>& X) : n_rows(X.n_rows) , n_cols(X.n_cols) , n_elem(X.n_elem) , vec_state(0) , mem_state(0) , mem() { arma_extra_debug_sigprint_this(this); init_cold(); X.extract(*this); } template<typename eT> inline Mat<eT>::Mat(const subview_row_htrans<eT>& X) : n_rows(X.n_rows) , n_cols(X.n_cols) , n_elem(X.n_elem) , vec_state(0) , mem_state(0) , mem() { arma_extra_debug_sigprint_this(this); init_cold(); X.extract(*this); } template<typename eT> inline Mat<eT>::Mat(const xvec_htrans<eT>& X) : n_rows(X.n_rows) , n_cols(X.n_cols) , n_elem(X.n_elem) , vec_state(0) , mem_state(0) , mem() { arma_extra_debug_sigprint_this(this); init_cold(); X.extract(*this); } //! construct a matrix from a subview_cube instance template<typename eT> inline Mat<eT>::Mat(const subview_cube<eT>& x) : n_rows(0) , n_cols(0) , n_elem(0) , vec_state(0) , mem_state(0) , mem() { arma_extra_debug_sigprint_this(this); this->operator=(x); } //! construct a matrix from a subview_cube instance template<typename eT> inline const Mat<eT>& Mat<eT>::operator=(const subview_cube<eT>& X) { arma_extra_debug_sigprint(); subview_cube<eT>::extract(*this, X); return *this; } //! in-place matrix addition (using a single-slice subcube on the right-hand-side) template<typename eT> inline const Mat<eT>& Mat<eT>::operator+=(const subview_cube<eT>& X) { arma_extra_debug_sigprint(); subview_cube<eT>::plus_inplace(*this, X); return *this; } //! in-place matrix subtraction (using a single-slice subcube on the right-hand-side) template<typename eT> inline const Mat<eT>& Mat<eT>::operator-=(const subview_cube<eT>& X) { arma_extra_debug_sigprint(); subview_cube<eT>::minus_inplace(*this, X); return *this; } //! in-place matrix mutiplication (using a single-slice subcube on the right-hand-side) template<typename eT> inline const Mat<eT>& Mat<eT>::operator*=(const subview_cube<eT>& X) { arma_extra_debug_sigprint(); const Mat<eT> tmp(X); glue_times::apply_inplace(*this, tmp); return *this; } //! in-place element-wise matrix mutiplication (using a single-slice subcube on the right-hand-side) template<typename eT> inline const Mat<eT>& Mat<eT>::operator%=(const subview_cube<eT>& X) { arma_extra_debug_sigprint(); subview_cube<eT>::schur_inplace(*this, X); return *this; } //! in-place element-wise matrix division (using a single-slice subcube on the right-hand-side) template<typename eT> inline const Mat<eT>& Mat<eT>::operator/=(const subview_cube<eT>& X) { arma_extra_debug_sigprint(); subview_cube<eT>::div_inplace(*this, X); return *this; } //! construct a matrix from diagview (e.g. construct a matrix from a delayed diag operation) template<typename eT> inline Mat<eT>::Mat(const diagview<eT>& X) : n_rows(X.n_rows) , n_cols(X.n_cols) , n_elem(X.n_elem) , vec_state(0) , mem_state(0) , mem() { arma_extra_debug_sigprint_this(this); init_cold(); diagview<eT>::extract(*this, X); } //! construct a matrix from diagview (e.g. construct a matrix from a delayed diag operation) template<typename eT> inline const Mat<eT>& Mat<eT>::operator=(const diagview<eT>& X) { arma_extra_debug_sigprint(); const bool alias = (this == &(X.m)); if(alias == false) { init_warm(X.n_rows, X.n_cols); diagview<eT>::extract(*this, X); } else { Mat<eT> tmp(X); steal_mem(tmp); } return *this; } //! in-place matrix addition (using a diagview on the right-hand-side) template<typename eT> inline const Mat<eT>& Mat<eT>::operator+=(const diagview<eT>& X) { arma_extra_debug_sigprint(); diagview<eT>::plus_inplace(*this, X); return *this; } //! in-place matrix subtraction (using a diagview on the right-hand-side) template<typename eT> inline const Mat<eT>& Mat<eT>::operator-=(const diagview<eT>& X) { arma_extra_debug_sigprint(); diagview<eT>::minus_inplace(*this, X); return *this; } //! in-place matrix mutiplication (using a diagview on the right-hand-side) template<typename eT> inline const Mat<eT>& Mat<eT>::operator*=(const diagview<eT>& X) { arma_extra_debug_sigprint(); glue_times::apply_inplace(*this, X); return *this; } //! in-place element-wise matrix mutiplication (using a diagview on the right-hand-side) template<typename eT> inline const Mat<eT>& Mat<eT>::operator%=(const diagview<eT>& X) { arma_extra_debug_sigprint(); diagview<eT>::schur_inplace(*this, X); return *this; } //! in-place element-wise matrix division (using a diagview on the right-hand-side) template<typename eT> inline const Mat<eT>& Mat<eT>::operator/=(const diagview<eT>& X) { arma_extra_debug_sigprint(); diagview<eT>::div_inplace(*this, X); return *this; } template<typename eT> template<typename T1> inline Mat<eT>::Mat(const subview_elem1<eT,T1>& X) : n_rows(0) , n_cols(0) , n_elem(0) , vec_state(0) , mem_state(0) , mem() { arma_extra_debug_sigprint_this(this); this->operator=(X); } template<typename eT> template<typename T1> inline const Mat<eT>& Mat<eT>::operator=(const subview_elem1<eT,T1>& X) { arma_extra_debug_sigprint(); subview_elem1<eT,T1>::extract(*this, X); return *this; } template<typename eT> template<typename T1> inline const Mat<eT>& Mat<eT>::operator+=(const subview_elem1<eT,T1>& X) { arma_extra_debug_sigprint(); subview_elem1<eT,T1>::plus_inplace(*this, X); return *this; } template<typename eT> template<typename T1> inline const Mat<eT>& Mat<eT>::operator-=(const subview_elem1<eT,T1>& X) { arma_extra_debug_sigprint(); subview_elem1<eT,T1>::minus_inplace(*this, X); return *this; } template<typename eT> template<typename T1> inline const Mat<eT>& Mat<eT>::operator*=(const subview_elem1<eT,T1>& X) { arma_extra_debug_sigprint(); glue_times::apply_inplace(*this, X); return *this; } template<typename eT> template<typename T1> inline const Mat<eT>& Mat<eT>::operator%=(const subview_elem1<eT,T1>& X) { arma_extra_debug_sigprint(); subview_elem1<eT,T1>::schur_inplace(*this, X); return *this; } template<typename eT> template<typename T1> inline const Mat<eT>& Mat<eT>::operator/=(const subview_elem1<eT,T1>& X) { arma_extra_debug_sigprint(); subview_elem1<eT,T1>::div_inplace(*this, X); return *this; } template<typename eT> template<typename T1, typename T2> inline Mat<eT>::Mat(const subview_elem2<eT,T1,T2>& X) : n_rows(0) , n_cols(0) , n_elem(0) , vec_state(0) , mem_state(0) , mem() { arma_extra_debug_sigprint_this(this); this->operator=(X); } template<typename eT> template<typename T1, typename T2> inline const Mat<eT>& Mat<eT>::operator=(const subview_elem2<eT,T1,T2>& X) { arma_extra_debug_sigprint(); subview_elem2<eT,T1,T2>::extract(*this, X); return *this; } template<typename eT> template<typename T1, typename T2> inline const Mat<eT>& Mat<eT>::operator+=(const subview_elem2<eT,T1,T2>& X) { arma_extra_debug_sigprint(); subview_elem2<eT,T1,T2>::plus_inplace(*this, X); return *this; } template<typename eT> template<typename T1, typename T2> inline const Mat<eT>& Mat<eT>::operator-=(const subview_elem2<eT,T1,T2>& X) { arma_extra_debug_sigprint(); subview_elem2<eT,T1,T2>::minus_inplace(*this, X); return *this; } template<typename eT> template<typename T1, typename T2> inline const Mat<eT>& Mat<eT>::operator*=(const subview_elem2<eT,T1,T2>& X) { arma_extra_debug_sigprint(); glue_times::apply_inplace(*this, X); return *this; } template<typename eT> template<typename T1, typename T2> inline const Mat<eT>& Mat<eT>::operator%=(const subview_elem2<eT,T1,T2>& X) { arma_extra_debug_sigprint(); subview_elem2<eT,T1,T2>::schur_inplace(*this, X); return *this; } template<typename eT> template<typename T1, typename T2> inline const Mat<eT>& Mat<eT>::operator/=(const subview_elem2<eT,T1,T2>& X) { arma_extra_debug_sigprint(); subview_elem2<eT,T1,T2>::div_inplace(*this, X); return *this; } template<typename eT> template<typename T1> inline Mat<eT>::Mat(const SpBase<eT, T1>& m) : n_rows(0) , n_cols(0) , n_elem(0) , vec_state(0) , mem_state(0) , mem() { arma_extra_debug_sigprint_this(this); const SpProxy<T1> p(m.get_ref()); access::rw(n_rows) = p.get_n_rows(); access::rw(n_cols) = p.get_n_cols(); access::rw(n_elem) = p.get_n_elem(); init_cold(); fill(eT(0)); typename SpProxy<T1>::const_iterator_type it = p.begin(); typename SpProxy<T1>::const_iterator_type it_end = p.end(); while(it != it_end) { at(it.row(), it.col()) = (*it); ++it; } } template<typename eT> template<typename T1> inline const Mat<eT>& Mat<eT>::operator=(const SpBase<eT, T1>& m) { arma_extra_debug_sigprint(); const SpProxy<T1> p(m.get_ref()); init_warm(p.get_n_rows(), p.get_n_cols()); fill(eT(0)); typename SpProxy<T1>::const_iterator_type it = p.begin(); typename SpProxy<T1>::const_iterator_type it_end = p.end(); while(it != it_end) { at(it.row(), it.col()) = (*it); ++it; } return *this; } template<typename eT> template<typename T1> inline const Mat<eT>& Mat<eT>::operator+=(const SpBase<eT, T1>& m) { arma_extra_debug_sigprint(); const SpProxy<T1> p(m.get_ref()); arma_debug_assert_same_size(n_rows, n_cols, p.get_n_rows(), p.get_n_cols(), "addition"); typename SpProxy<T1>::const_iterator_type it = p.begin(); typename SpProxy<T1>::const_iterator_type it_end = p.end(); while(it != it_end) { at(it.row(), it.col()) += (*it); ++it; } return *this; } template<typename eT> template<typename T1> inline const Mat<eT>& Mat<eT>::operator-=(const SpBase<eT, T1>& m) { arma_extra_debug_sigprint(); const SpProxy<T1> p(m.get_ref()); arma_debug_assert_same_size(n_rows, n_cols, p.get_n_rows(), p.get_n_cols(), "subtraction"); typename SpProxy<T1>::const_iterator_type it = p.begin(); typename SpProxy<T1>::const_iterator_type it_end = p.end(); while(it != it_end) { at(it.row(), it.col()) -= (*it); ++it; } return *this; } template<typename eT> template<typename T1> inline const Mat<eT>& Mat<eT>::operator*=(const SpBase<eT, T1>& m) { arma_extra_debug_sigprint(); Mat<eT> z; z = (*this) * m.get_ref(); steal_mem(z); return *this; } template<typename eT> template<typename T1> inline const Mat<eT>& Mat<eT>::operator%=(const SpBase<eT, T1>& m) { arma_extra_debug_sigprint(); const SpProxy<T1> p(m.get_ref()); arma_debug_assert_same_size(n_rows, n_cols, p.get_n_rows(), p.get_n_cols(), "element-wise multiplication"); typename SpProxy<T1>::const_iterator_type it = p.begin(); typename SpProxy<T1>::const_iterator_type it_end = p.end(); // We have to zero everything that isn't being used. arrayops::inplace_set(memptr(), eT(0), (it.col() * n_rows) + it.row()); while(it != it_end) { const uword cur_loc = (it.col() * n_rows) + it.row(); access::rw(mem[cur_loc]) *= (*it); ++it; const uword next_loc = (it == it_end) ? (p.get_n_cols() * n_rows) : (it.col() * n_rows) + it.row(); arrayops::inplace_set(memptr() + cur_loc + 1, eT(0), (next_loc - cur_loc - 1)); } return *this; } template<typename eT> template<typename T1> inline const Mat<eT>& Mat<eT>::operator/=(const SpBase<eT, T1>& m) { arma_extra_debug_sigprint(); const SpProxy<T1> p(m.get_ref()); arma_debug_assert_same_size(n_rows, n_cols, p.get_n_rows(), p.get_n_cols(), "element-wise division"); // If you use this method, you are probably stupid or misguided, but for completeness it is implemented. // Unfortunately the best way to do this is loop over every element. for(uword c = 0; c < n_cols; ++c) for(uword r = 0; r < n_rows; ++r) { at(r, c) /= p.at(r, c); } return *this; } template<typename eT> inline mat_injector< Mat<eT> > Mat<eT>::operator<<(const eT val) { return mat_injector< Mat<eT> >(*this, val); } template<typename eT> inline mat_injector< Mat<eT> > Mat<eT>::operator<<(const injector_end_of_row<>& x) { return mat_injector< Mat<eT> >(*this, x); } //! creation of subview (row vector) template<typename eT> arma_inline subview_row<eT> Mat<eT>::row(const uword row_num) { arma_extra_debug_sigprint(); arma_debug_check( row_num >= n_rows, "Mat::row(): index out of bounds" ); return subview_row<eT>(*this, row_num); } //! creation of subview (row vector) template<typename eT> arma_inline const subview_row<eT> Mat<eT>::row(const uword row_num) const { arma_extra_debug_sigprint(); arma_debug_check( row_num >= n_rows, "Mat::row(): index out of bounds" ); return subview_row<eT>(*this, row_num); } template<typename eT> inline subview_row<eT> Mat<eT>::operator()(const uword row_num, const span& col_span) { arma_extra_debug_sigprint(); const bool col_all = col_span.whole; const uword local_n_cols = n_cols; const uword in_col1 = col_all ? 0 : col_span.a; const uword in_col2 = col_span.b; const uword submat_n_cols = col_all ? local_n_cols : in_col2 - in_col1 + 1; arma_debug_check ( (row_num >= n_rows) || ( col_all ? false : ((in_col1 > in_col2) || (in_col2 >= local_n_cols)) ) , "Mat::operator(): indices out of bounds or incorrectly used" ); return subview_row<eT>(*this, row_num, in_col1, submat_n_cols); } template<typename eT> inline const subview_row<eT> Mat<eT>::operator()(const uword row_num, const span& col_span) const { arma_extra_debug_sigprint(); const bool col_all = col_span.whole; const uword local_n_cols = n_cols; const uword in_col1 = col_all ? 0 : col_span.a; const uword in_col2 = col_span.b; const uword submat_n_cols = col_all ? local_n_cols : in_col2 - in_col1 + 1; arma_debug_check ( (row_num >= n_rows) || ( col_all ? false : ((in_col1 > in_col2) || (in_col2 >= local_n_cols)) ) , "Mat::operator(): indices out of bounds or incorrectly used" ); return subview_row<eT>(*this, row_num, in_col1, submat_n_cols); } //! creation of subview (column vector) template<typename eT> arma_inline subview_col<eT> Mat<eT>::col(const uword col_num) { arma_extra_debug_sigprint(); arma_debug_check( col_num >= n_cols, "Mat::col(): index out of bounds"); return subview_col<eT>(*this, col_num); } //! creation of subview (column vector) template<typename eT> arma_inline const subview_col<eT> Mat<eT>::col(const uword col_num) const { arma_extra_debug_sigprint(); arma_debug_check( col_num >= n_cols, "Mat::col(): index out of bounds"); return subview_col<eT>(*this, col_num); } template<typename eT> inline subview_col<eT> Mat<eT>::operator()(const span& row_span, const uword col_num) { arma_extra_debug_sigprint(); const bool row_all = row_span.whole; const uword local_n_rows = n_rows; const uword in_row1 = row_all ? 0 : row_span.a; const uword in_row2 = row_span.b; const uword submat_n_rows = row_all ? local_n_rows : in_row2 - in_row1 + 1; arma_debug_check ( (col_num >= n_cols) || ( row_all ? false : ((in_row1 > in_row2) || (in_row2 >= local_n_rows)) ) , "Mat::operator(): indices out of bounds or incorrectly used" ); return subview_col<eT>(*this, col_num, in_row1, submat_n_rows); } template<typename eT> inline const subview_col<eT> Mat<eT>::operator()(const span& row_span, const uword col_num) const { arma_extra_debug_sigprint(); const bool row_all = row_span.whole; const uword local_n_rows = n_rows; const uword in_row1 = row_all ? 0 : row_span.a; const uword in_row2 = row_span.b; const uword submat_n_rows = row_all ? local_n_rows : in_row2 - in_row1 + 1; arma_debug_check ( (col_num >= n_cols) || ( row_all ? false : ((in_row1 > in_row2) || (in_row2 >= local_n_rows)) ) , "Mat::operator(): indices out of bounds or incorrectly used" ); return subview_col<eT>(*this, col_num, in_row1, submat_n_rows); } //! create a Col object which uses memory from an existing matrix object. //! this approach is currently not alias safe //! and does not take into account that the parent matrix object could be deleted. //! if deleted memory is accessed by the created Col object, //! it will cause memory corruption and/or a crash template<typename eT> inline Col<eT> Mat<eT>::unsafe_col(const uword col_num) { arma_extra_debug_sigprint(); arma_debug_check( col_num >= n_cols, "Mat::unsafe_col(): index out of bounds"); return Col<eT>(colptr(col_num), n_rows, false, true); } //! create a Col object which uses memory from an existing matrix object. //! this approach is currently not alias safe //! and does not take into account that the parent matrix object could be deleted. //! if deleted memory is accessed by the created Col object, //! it will cause memory corruption and/or a crash template<typename eT> inline const Col<eT> Mat<eT>::unsafe_col(const uword col_num) const { arma_extra_debug_sigprint(); arma_debug_check( col_num >= n_cols, "Mat::unsafe_col(): index out of bounds"); typedef const Col<eT> out_type; return out_type(const_cast<eT*>(colptr(col_num)), n_rows, false, true); } //! creation of subview (submatrix comprised of specified row vectors) template<typename eT> arma_inline subview<eT> Mat<eT>::rows(const uword in_row1, const uword in_row2) { arma_extra_debug_sigprint(); arma_debug_check ( (in_row1 > in_row2) || (in_row2 >= n_rows), "Mat::rows(): indices out of bounds or incorrectly used" ); const uword subview_n_rows = in_row2 - in_row1 + 1; return subview<eT>(*this, in_row1, 0, subview_n_rows, n_cols ); } //! creation of subview (submatrix comprised of specified row vectors) template<typename eT> arma_inline const subview<eT> Mat<eT>::rows(const uword in_row1, const uword in_row2) const { arma_extra_debug_sigprint(); arma_debug_check ( (in_row1 > in_row2) || (in_row2 >= n_rows), "Mat::rows(): indices out of bounds or incorrectly used" ); const uword subview_n_rows = in_row2 - in_row1 + 1; return subview<eT>(*this, in_row1, 0, subview_n_rows, n_cols ); } //! creation of subview (submatrix comprised of specified column vectors) template<typename eT> arma_inline subview<eT> Mat<eT>::cols(const uword in_col1, const uword in_col2) { arma_extra_debug_sigprint(); arma_debug_check ( (in_col1 > in_col2) || (in_col2 >= n_cols), "Mat::cols(): indices out of bounds or incorrectly used" ); const uword subview_n_cols = in_col2 - in_col1 + 1; return subview<eT>(*this, 0, in_col1, n_rows, subview_n_cols); } //! creation of subview (submatrix comprised of specified column vectors) template<typename eT> arma_inline const subview<eT> Mat<eT>::cols(const uword in_col1, const uword in_col2) const { arma_extra_debug_sigprint(); arma_debug_check ( (in_col1 > in_col2) || (in_col2 >= n_cols), "Mat::cols(): indices out of bounds or incorrectly used" ); const uword subview_n_cols = in_col2 - in_col1 + 1; return subview<eT>(*this, 0, in_col1, n_rows, subview_n_cols); } //! creation of subview (submatrix) template<typename eT> arma_inline subview<eT> Mat<eT>::submat(const uword in_row1, const uword in_col1, const uword in_row2, const uword in_col2) { arma_extra_debug_sigprint(); arma_debug_check ( (in_row1 > in_row2) || (in_col1 > in_col2) || (in_row2 >= n_rows) || (in_col2 >= n_cols), "Mat::submat(): indices out of bounds or incorrectly used" ); const uword subview_n_rows = in_row2 - in_row1 + 1; const uword subview_n_cols = in_col2 - in_col1 + 1; return subview<eT>(*this, in_row1, in_col1, subview_n_rows, subview_n_cols); } //! creation of subview (generic submatrix) template<typename eT> arma_inline const subview<eT> Mat<eT>::submat(const uword in_row1, const uword in_col1, const uword in_row2, const uword in_col2) const { arma_extra_debug_sigprint(); arma_debug_check ( (in_row1 > in_row2) || (in_col1 > in_col2) || (in_row2 >= n_rows) || (in_col2 >= n_cols), "Mat::submat(): indices out of bounds or incorrectly used" ); const uword subview_n_rows = in_row2 - in_row1 + 1; const uword subview_n_cols = in_col2 - in_col1 + 1; return subview<eT>(*this, in_row1, in_col1, subview_n_rows, subview_n_cols); } //! creation of subview (submatrix) template<typename eT> inline subview<eT> Mat<eT>::submat(const span& row_span, const span& col_span) { arma_extra_debug_sigprint(); const bool row_all = row_span.whole; const bool col_all = col_span.whole; const uword local_n_rows = n_rows; const uword local_n_cols = n_cols; const uword in_row1 = row_all ? 0 : row_span.a; const uword in_row2 = row_span.b; const uword submat_n_rows = row_all ? local_n_rows : in_row2 - in_row1 + 1; const uword in_col1 = col_all ? 0 : col_span.a; const uword in_col2 = col_span.b; const uword submat_n_cols = col_all ? local_n_cols : in_col2 - in_col1 + 1; arma_debug_check ( ( row_all ? false : ((in_row1 > in_row2) || (in_row2 >= local_n_rows)) ) || ( col_all ? false : ((in_col1 > in_col2) || (in_col2 >= local_n_cols)) ) , "Mat::submat(): indices out of bounds or incorrectly used" ); return subview<eT>(*this, in_row1, in_col1, submat_n_rows, submat_n_cols); } //! creation of subview (generic submatrix) template<typename eT> inline const subview<eT> Mat<eT>::submat(const span& row_span, const span& col_span) const { arma_extra_debug_sigprint(); const bool row_all = row_span.whole; const bool col_all = col_span.whole; const uword local_n_rows = n_rows; const uword local_n_cols = n_cols; const uword in_row1 = row_all ? 0 : row_span.a; const uword in_row2 = row_span.b; const uword submat_n_rows = row_all ? local_n_rows : in_row2 - in_row1 + 1; const uword in_col1 = col_all ? 0 : col_span.a; const uword in_col2 = col_span.b; const uword submat_n_cols = col_all ? local_n_cols : in_col2 - in_col1 + 1; arma_debug_check ( ( row_all ? false : ((in_row1 > in_row2) || (in_row2 >= local_n_rows)) ) || ( col_all ? false : ((in_col1 > in_col2) || (in_col2 >= local_n_cols)) ) , "Mat::submat(): indices out of bounds or incorrectly used" ); return subview<eT>(*this, in_row1, in_col1, submat_n_rows, submat_n_cols); } template<typename eT> inline subview<eT> Mat<eT>::operator()(const span& row_span, const span& col_span) { arma_extra_debug_sigprint(); return (*this).submat(row_span, col_span); } template<typename eT> inline const subview<eT> Mat<eT>::operator()(const span& row_span, const span& col_span) const { arma_extra_debug_sigprint(); return (*this).submat(row_span, col_span); } template<typename eT> template<typename T1> arma_inline subview_elem1<eT,T1> Mat<eT>::elem(const Base<uword,T1>& a) { arma_extra_debug_sigprint(); return subview_elem1<eT,T1>(*this, a); } template<typename eT> template<typename T1> arma_inline const subview_elem1<eT,T1> Mat<eT>::elem(const Base<uword,T1>& a) const { arma_extra_debug_sigprint(); return subview_elem1<eT,T1>(*this, a); } template<typename eT> template<typename T1> arma_inline subview_elem1<eT,T1> Mat<eT>::operator()(const Base<uword,T1>& a) { arma_extra_debug_sigprint(); return subview_elem1<eT,T1>(*this, a); } template<typename eT> template<typename T1> arma_inline const subview_elem1<eT,T1> Mat<eT>::operator()(const Base<uword,T1>& a) const { arma_extra_debug_sigprint(); return subview_elem1<eT,T1>(*this, a); } template<typename eT> template<typename T1, typename T2> arma_inline subview_elem2<eT,T1,T2> Mat<eT>::elem(const Base<uword,T1>& ri, const Base<uword,T2>& ci) { arma_extra_debug_sigprint(); return subview_elem2<eT,T1,T2>(*this, ri, ci, false, false); } template<typename eT> template<typename T1, typename T2> arma_inline const subview_elem2<eT,T1,T2> Mat<eT>::elem(const Base<uword,T1>& ri, const Base<uword,T2>& ci) const { arma_extra_debug_sigprint(); return subview_elem2<eT,T1,T2>(*this, ri, ci, false, false); } template<typename eT> template<typename T1, typename T2> arma_inline subview_elem2<eT,T1,T2> Mat<eT>::submat(const Base<uword,T1>& ri, const Base<uword,T2>& ci) { arma_extra_debug_sigprint(); return subview_elem2<eT,T1,T2>(*this, ri, ci, false, false); } template<typename eT> template<typename T1, typename T2> arma_inline const subview_elem2<eT,T1,T2> Mat<eT>::submat(const Base<uword,T1>& ri, const Base<uword,T2>& ci) const { arma_extra_debug_sigprint(); return subview_elem2<eT,T1,T2>(*this, ri, ci, false, false); } template<typename eT> template<typename T1, typename T2> arma_inline subview_elem2<eT,T1,T2> Mat<eT>::operator()(const Base<uword,T1>& ri, const Base<uword,T2>& ci) { arma_extra_debug_sigprint(); return subview_elem2<eT,T1,T2>(*this, ri, ci, false, false); } template<typename eT> template<typename T1, typename T2> arma_inline const subview_elem2<eT,T1,T2> Mat<eT>::operator()(const Base<uword,T1>& ri, const Base<uword,T2>& ci) const { arma_extra_debug_sigprint(); return subview_elem2<eT,T1,T2>(*this, ri, ci, false, false); } template<typename eT> template<typename T1> arma_inline subview_elem2<eT,T1,T1> Mat<eT>::rows(const Base<uword,T1>& ri) { arma_extra_debug_sigprint(); return subview_elem2<eT,T1,T1>(*this, ri, ri, false, true); } template<typename eT> template<typename T1> arma_inline const subview_elem2<eT,T1,T1> Mat<eT>::rows(const Base<uword,T1>& ri) const { arma_extra_debug_sigprint(); return subview_elem2<eT,T1,T1>(*this, ri, ri, false, true); } template<typename eT> template<typename T2> arma_inline subview_elem2<eT,T2,T2> Mat<eT>::cols(const Base<uword,T2>& ci) { arma_extra_debug_sigprint(); return subview_elem2<eT,T2,T2>(*this, ci, ci, true, false); } template<typename eT> template<typename T2> arma_inline const subview_elem2<eT,T2,T2> Mat<eT>::cols(const Base<uword,T2>& ci) const { arma_extra_debug_sigprint(); return subview_elem2<eT,T2,T2>(*this, ci, ci, true, false); } template<typename eT> arma_inline subview_each1< Mat<eT>, 0 > Mat<eT>::each_col() { arma_extra_debug_sigprint(); return subview_each1< Mat<eT>, 0>(*this); } template<typename eT> arma_inline subview_each1< Mat<eT>, 1 > Mat<eT>::each_row() { arma_extra_debug_sigprint(); return subview_each1< Mat<eT>, 1>(*this); } template<typename eT> template<typename T1> inline subview_each2< Mat<eT>, 0, T1 > Mat<eT>::each_col(const Base<uword, T1>& indices) { arma_extra_debug_sigprint(); return subview_each2< Mat<eT>, 0, T1 >(*this, indices); } template<typename eT> template<typename T1> inline subview_each2< Mat<eT>, 1, T1 > Mat<eT>::each_row(const Base<uword, T1>& indices) { arma_extra_debug_sigprint(); return subview_each2< Mat<eT>, 1, T1 >(*this, indices); } //! creation of diagview (diagonal) template<typename eT> arma_inline diagview<eT> Mat<eT>::diag(const sword in_id) { arma_extra_debug_sigprint(); const uword row_offset = (in_id < 0) ? uword(-in_id) : 0; const uword col_offset = (in_id > 0) ? uword( in_id) : 0; arma_debug_check ( ((row_offset > 0) && (row_offset >= n_rows)) || ((col_offset > 0) && (col_offset >= n_cols)), "Mat::diag(): requested diagonal out of bounds" ); const uword len = (std::min)(n_rows - row_offset, n_cols - col_offset); return diagview<eT>(*this, row_offset, col_offset, len); } //! creation of diagview (diagonal) template<typename eT> arma_inline const diagview<eT> Mat<eT>::diag(const sword in_id) const { arma_extra_debug_sigprint(); const uword row_offset = (in_id < 0) ? -in_id : 0; const uword col_offset = (in_id > 0) ? in_id : 0; arma_debug_check ( ((row_offset > 0) && (row_offset >= n_rows)) || ((col_offset > 0) && (col_offset >= n_cols)), "Mat::diag(): requested diagonal out of bounds" ); const uword len = (std::min)(n_rows - row_offset, n_cols - col_offset); return diagview<eT>(*this, row_offset, col_offset, len); } template<typename eT> inline void Mat<eT>::swap_rows(const uword in_row1, const uword in_row2) { arma_extra_debug_sigprint(); const uword local_n_rows = n_rows; const uword local_n_cols = n_cols; arma_debug_check ( (in_row1 >= local_n_rows) || (in_row2 >= local_n_rows), "Mat::swap_rows(): index out of bounds" ); if(n_elem > 0) { for(uword ucol=0; ucol < local_n_cols; ++ucol) { const uword offset = ucol * local_n_rows; const uword pos1 = in_row1 + offset; const uword pos2 = in_row2 + offset; std::swap( access::rw(mem[pos1]), access::rw(mem[pos2]) ); } } } template<typename eT> inline void Mat<eT>::swap_cols(const uword in_colA, const uword in_colB) { arma_extra_debug_sigprint(); const uword local_n_rows = n_rows; const uword local_n_cols = n_cols; arma_debug_check ( (in_colA >= local_n_cols) || (in_colB >= local_n_cols), "Mat::swap_cols(): index out of bounds" ); if(n_elem > 0) { eT* ptrA = colptr(in_colA); eT* ptrB = colptr(in_colB); eT tmp_i; eT tmp_j; uword iq,jq; for(iq=0, jq=1; jq < local_n_rows; iq+=2, jq+=2) { tmp_i = ptrA[iq]; tmp_j = ptrA[jq]; ptrA[iq] = ptrB[iq]; ptrA[jq] = ptrB[jq]; ptrB[iq] = tmp_i; ptrB[jq] = tmp_j; } if(iq < local_n_rows) { std::swap( ptrA[iq], ptrB[iq] ); } } } //! remove specified row template<typename eT> inline void Mat<eT>::shed_row(const uword row_num) { arma_extra_debug_sigprint(); arma_debug_check( row_num >= n_rows, "Mat::shed_row(): index out of bounds"); shed_rows(row_num, row_num); } //! remove specified column template<typename eT> inline void Mat<eT>::shed_col(const uword col_num) { arma_extra_debug_sigprint(); arma_debug_check( col_num >= n_cols, "Mat::shed_col(): index out of bounds"); shed_cols(col_num, col_num); } //! remove specified rows template<typename eT> inline void Mat<eT>::shed_rows(const uword in_row1, const uword in_row2) { arma_extra_debug_sigprint(); arma_debug_check ( (in_row1 > in_row2) || (in_row2 >= n_rows), "Mat::shed_rows(): indices out of bounds or incorrectly used" ); const uword n_keep_front = in_row1; const uword n_keep_back = n_rows - (in_row2 + 1); Mat<eT> X(n_keep_front + n_keep_back, n_cols); if(n_keep_front > 0) { X.rows( 0, (n_keep_front-1) ) = rows( 0, (in_row1-1) ); } if(n_keep_back > 0) { X.rows( n_keep_front, (n_keep_front+n_keep_back-1) ) = rows( (in_row2+1), (n_rows-1) ); } steal_mem(X); } //! remove specified columns template<typename eT> inline void Mat<eT>::shed_cols(const uword in_col1, const uword in_col2) { arma_extra_debug_sigprint(); arma_debug_check ( (in_col1 > in_col2) || (in_col2 >= n_cols), "Mat::shed_cols(): indices out of bounds or incorrectly used" ); const uword n_keep_front = in_col1; const uword n_keep_back = n_cols - (in_col2 + 1); Mat<eT> X(n_rows, n_keep_front + n_keep_back); if(n_keep_front > 0) { X.cols( 0, (n_keep_front-1) ) = cols( 0, (in_col1-1) ); } if(n_keep_back > 0) { X.cols( n_keep_front, (n_keep_front+n_keep_back-1) ) = cols( (in_col2+1), (n_cols-1) ); } steal_mem(X); } //! insert N rows at the specified row position, //! optionally setting the elements of the inserted rows to zero template<typename eT> inline void Mat<eT>::insert_rows(const uword row_num, const uword N, const bool set_to_zero) { arma_extra_debug_sigprint(); const uword t_n_rows = n_rows; const uword t_n_cols = n_cols; const uword A_n_rows = row_num; const uword B_n_rows = t_n_rows - row_num; // insertion at row_num == n_rows is in effect an append operation arma_debug_check( (row_num > t_n_rows), "Mat::insert_rows(): index out of bounds"); if(N > 0) { Mat<eT> out(t_n_rows + N, t_n_cols); if(A_n_rows > 0) { out.rows(0, A_n_rows-1) = rows(0, A_n_rows-1); } if(B_n_rows > 0) { out.rows(row_num + N, t_n_rows + N - 1) = rows(row_num, t_n_rows-1); } if(set_to_zero == true) { out.rows(row_num, row_num + N - 1).zeros(); } steal_mem(out); } } //! insert N columns at the specified column position, //! optionally setting the elements of the inserted columns to zero template<typename eT> inline void Mat<eT>::insert_cols(const uword col_num, const uword N, const bool set_to_zero) { arma_extra_debug_sigprint(); const uword t_n_rows = n_rows; const uword t_n_cols = n_cols; const uword A_n_cols = col_num; const uword B_n_cols = t_n_cols - col_num; // insertion at col_num == n_cols is in effect an append operation arma_debug_check( (col_num > t_n_cols), "Mat::insert_cols(): index out of bounds"); if(N > 0) { Mat<eT> out(t_n_rows, t_n_cols + N); if(A_n_cols > 0) { out.cols(0, A_n_cols-1) = cols(0, A_n_cols-1); } if(B_n_cols > 0) { out.cols(col_num + N, t_n_cols + N - 1) = cols(col_num, t_n_cols-1); } if(set_to_zero == true) { out.cols(col_num, col_num + N - 1).zeros(); } steal_mem(out); } } //! insert the given object at the specified row position; //! the given object must have the same number of columns as the matrix template<typename eT> template<typename T1> inline void Mat<eT>::insert_rows(const uword row_num, const Base<eT,T1>& X) { arma_extra_debug_sigprint(); const unwrap<T1> tmp(X.get_ref()); const Mat<eT>& C = tmp.M; const uword C_n_rows = C.n_rows; const uword C_n_cols = C.n_cols; const uword t_n_rows = n_rows; const uword t_n_cols = n_cols; const uword A_n_rows = row_num; const uword B_n_rows = t_n_rows - row_num; bool err_state = false; char* err_msg = 0; // insertion at row_num == n_rows is in effect an append operation arma_debug_set_error ( err_state, err_msg, (row_num > t_n_rows), "Mat::insert_rows(): index out of bounds" ); arma_debug_set_error ( err_state, err_msg, ( (C_n_cols != t_n_cols) && ( (t_n_rows > 0) || (t_n_cols > 0) ) && ( (C_n_rows > 0) || (C_n_cols > 0) ) ), "Mat::insert_rows(): given object has an incompatible number of columns" ); arma_debug_check(err_state, err_msg); if(C_n_rows > 0) { Mat<eT> out( t_n_rows + C_n_rows, (std::max)(t_n_cols, C_n_cols) ); if(t_n_cols > 0) { if(A_n_rows > 0) { out.rows(0, A_n_rows-1) = rows(0, A_n_rows-1); } if( (t_n_cols > 0) && (B_n_rows > 0) ) { out.rows(row_num + C_n_rows, t_n_rows + C_n_rows - 1) = rows(row_num, t_n_rows - 1); } } if(C_n_cols > 0) { out.rows(row_num, row_num + C_n_rows - 1) = C; } steal_mem(out); } } //! insert the given object at the specified column position; //! the given object must have the same number of rows as the matrix template<typename eT> template<typename T1> inline void Mat<eT>::insert_cols(const uword col_num, const Base<eT,T1>& X) { arma_extra_debug_sigprint(); const unwrap<T1> tmp(X.get_ref()); const Mat<eT>& C = tmp.M; const uword C_n_rows = C.n_rows; const uword C_n_cols = C.n_cols; const uword t_n_rows = n_rows; const uword t_n_cols = n_cols; const uword A_n_cols = col_num; const uword B_n_cols = t_n_cols - col_num; bool err_state = false; char* err_msg = 0; // insertion at col_num == n_cols is in effect an append operation arma_debug_set_error ( err_state, err_msg, (col_num > t_n_cols), "Mat::insert_cols(): index out of bounds" ); arma_debug_set_error ( err_state, err_msg, ( (C_n_rows != t_n_rows) && ( (t_n_rows > 0) || (t_n_cols > 0) ) && ( (C_n_rows > 0) || (C_n_cols > 0) ) ), "Mat::insert_cols(): given object has an incompatible number of rows" ); arma_debug_check(err_state, err_msg); if(C_n_cols > 0) { Mat<eT> out( (std::max)(t_n_rows, C_n_rows), t_n_cols + C_n_cols ); if(t_n_rows > 0) { if(A_n_cols > 0) { out.cols(0, A_n_cols-1) = cols(0, A_n_cols-1); } if(B_n_cols > 0) { out.cols(col_num + C_n_cols, t_n_cols + C_n_cols - 1) = cols(col_num, t_n_cols - 1); } } if(C_n_rows > 0) { out.cols(col_num, col_num + C_n_cols - 1) = C; } steal_mem(out); } } template<typename eT> template<typename T1, typename gen_type> inline Mat<eT>::Mat(const Gen<T1, gen_type>& X) : n_rows(X.n_rows) , n_cols(X.n_cols) , n_elem(n_rows*n_cols) , vec_state(0) , mem_state(0) , mem() { arma_extra_debug_sigprint_this(this); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); init_cold(); X.apply(*this); } template<typename eT> template<typename T1, typename gen_type> inline const Mat<eT>& Mat<eT>::operator=(const Gen<T1, gen_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); init_warm(X.n_rows, X.n_cols); X.apply(*this); return *this; } template<typename eT> template<typename T1, typename gen_type> inline const Mat<eT>& Mat<eT>::operator+=(const Gen<T1, gen_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); X.apply_inplace_plus(*this); return *this; } template<typename eT> template<typename T1, typename gen_type> inline const Mat<eT>& Mat<eT>::operator-=(const Gen<T1, gen_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); X.apply_inplace_minus(*this); return *this; } template<typename eT> template<typename T1, typename gen_type> inline const Mat<eT>& Mat<eT>::operator*=(const Gen<T1, gen_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); const Mat<eT> tmp(X); return (*this).operator*=(tmp); } template<typename eT> template<typename T1, typename gen_type> inline const Mat<eT>& Mat<eT>::operator%=(const Gen<T1, gen_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); X.apply_inplace_schur(*this); return *this; } template<typename eT> template<typename T1, typename gen_type> inline const Mat<eT>& Mat<eT>::operator/=(const Gen<T1, gen_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); X.apply_inplace_div(*this); return *this; } //! create a matrix from Op, i.e. run the previously delayed unary operations template<typename eT> template<typename T1, typename op_type> inline Mat<eT>::Mat(const Op<T1, op_type>& X) : n_rows(0) , n_cols(0) , n_elem(0) , vec_state(0) , mem_state(0) , mem() { arma_extra_debug_sigprint_this(this); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); op_type::apply(*this, X); } //! create a matrix from Op, i.e. run the previously delayed unary operations template<typename eT> template<typename T1, typename op_type> inline const Mat<eT>& Mat<eT>::operator=(const Op<T1, op_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); op_type::apply(*this, X); return *this; } //! in-place matrix addition, with the right-hand-side operand having delayed operations template<typename eT> template<typename T1, typename op_type> inline const Mat<eT>& Mat<eT>::operator+=(const Op<T1, op_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); const Mat<eT> m(X); return (*this).operator+=(m); } //! in-place matrix subtraction, with the right-hand-side operand having delayed operations template<typename eT> template<typename T1, typename op_type> inline const Mat<eT>& Mat<eT>::operator-=(const Op<T1, op_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); const Mat<eT> m(X); return (*this).operator-=(m); } //! in-place matrix multiplication, with the right-hand-side operand having delayed operations template<typename eT> template<typename T1, typename op_type> inline const Mat<eT>& Mat<eT>::operator*=(const Op<T1, op_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); glue_times::apply_inplace(*this, X); return *this; } //! in-place matrix element-wise multiplication, with the right-hand-side operand having delayed operations template<typename eT> template<typename T1, typename op_type> inline const Mat<eT>& Mat<eT>::operator%=(const Op<T1, op_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); const Mat<eT> m(X); return (*this).operator%=(m); } //! in-place matrix element-wise division, with the right-hand-side operand having delayed operations template<typename eT> template<typename T1, typename op_type> inline const Mat<eT>& Mat<eT>::operator/=(const Op<T1, op_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); const Mat<eT> m(X); return (*this).operator/=(m); } //! create a matrix from eOp, i.e. run the previously delayed unary operations template<typename eT> template<typename T1, typename eop_type> inline Mat<eT>::Mat(const eOp<T1, eop_type>& X) : n_rows(X.get_n_rows()) , n_cols(X.get_n_cols()) , n_elem(X.get_n_elem()) , vec_state(0) , mem_state(0) , mem() { arma_extra_debug_sigprint_this(this); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); init_cold(); eop_type::apply(*this, X); } //! create a matrix from eOp, i.e. run the previously delayed unary operations template<typename eT> template<typename T1, typename eop_type> inline const Mat<eT>& Mat<eT>::operator=(const eOp<T1, eop_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); const bool bad_alias = (eOp<T1, eop_type>::proxy_type::has_subview && X.P.is_alias(*this)); if(bad_alias == false) { init_warm(X.get_n_rows(), X.get_n_cols()); eop_type::apply(*this, X); } else { arma_extra_debug_print("bad_alias = true"); Mat<eT> tmp(X); steal_mem(tmp); } return *this; } template<typename eT> template<typename T1, typename eop_type> inline const Mat<eT>& Mat<eT>::operator+=(const eOp<T1, eop_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); eop_type::apply_inplace_plus(*this, X); return *this; } template<typename eT> template<typename T1, typename eop_type> inline const Mat<eT>& Mat<eT>::operator-=(const eOp<T1, eop_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); eop_type::apply_inplace_minus(*this, X); return *this; } template<typename eT> template<typename T1, typename eop_type> inline const Mat<eT>& Mat<eT>::operator*=(const eOp<T1, eop_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); glue_times::apply_inplace(*this, X); return *this; } template<typename eT> template<typename T1, typename eop_type> inline const Mat<eT>& Mat<eT>::operator%=(const eOp<T1, eop_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); eop_type::apply_inplace_schur(*this, X); return *this; } template<typename eT> template<typename T1, typename eop_type> inline const Mat<eT>& Mat<eT>::operator/=(const eOp<T1, eop_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); eop_type::apply_inplace_div(*this, X); return *this; } //! EXPERIMENTAL template<typename eT> template<typename T1, typename op_type> inline Mat<eT>::Mat(const mtOp<eT, T1, op_type>& X) : n_rows(0) , n_cols(0) , n_elem(0) , vec_state(0) , mem_state(0) , mem() { arma_extra_debug_sigprint_this(this); op_type::apply(*this, X); } //! EXPERIMENTAL template<typename eT> template<typename T1, typename op_type> inline const Mat<eT>& Mat<eT>::operator=(const mtOp<eT, T1, op_type>& X) { arma_extra_debug_sigprint(); op_type::apply(*this, X); return *this; } //! EXPERIMENTAL template<typename eT> template<typename T1, typename op_type> inline const Mat<eT>& Mat<eT>::operator+=(const mtOp<eT, T1, op_type>& X) { arma_extra_debug_sigprint(); const Mat<eT> m(X); return (*this).operator+=(m); } //! EXPERIMENTAL template<typename eT> template<typename T1, typename op_type> inline const Mat<eT>& Mat<eT>::operator-=(const mtOp<eT, T1, op_type>& X) { arma_extra_debug_sigprint(); const Mat<eT> m(X); return (*this).operator-=(m); } //! EXPERIMENTAL template<typename eT> template<typename T1, typename op_type> inline const Mat<eT>& Mat<eT>::operator*=(const mtOp<eT, T1, op_type>& X) { arma_extra_debug_sigprint(); const Mat<eT> m(X); return (*this).operator*=(m); } //! EXPERIMENTAL template<typename eT> template<typename T1, typename op_type> inline const Mat<eT>& Mat<eT>::operator%=(const mtOp<eT, T1, op_type>& X) { arma_extra_debug_sigprint(); const Mat<eT> m(X); return (*this).operator%=(m); } //! EXPERIMENTAL template<typename eT> template<typename T1, typename op_type> inline const Mat<eT>& Mat<eT>::operator/=(const mtOp<eT, T1, op_type>& X) { arma_extra_debug_sigprint(); const Mat<eT> m(X); return (*this).operator/=(m); } //! create a matrix from Glue, i.e. run the previously delayed binary operations template<typename eT> template<typename T1, typename T2, typename glue_type> inline Mat<eT>::Mat(const Glue<T1, T2, glue_type>& X) : n_rows(0) , n_cols(0) , n_elem(0) , vec_state(0) , mem_state(0) , mem() { arma_extra_debug_sigprint_this(this); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); arma_type_check(( is_same_type< eT, typename T2::elem_type >::value == false )); glue_type::apply(*this, X); } //! create a matrix from Glue, i.e. run the previously delayed binary operations template<typename eT> template<typename T1, typename T2, typename glue_type> inline const Mat<eT>& Mat<eT>::operator=(const Glue<T1, T2, glue_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); arma_type_check(( is_same_type< eT, typename T2::elem_type >::value == false )); glue_type::apply(*this, X); return *this; } //! in-place matrix addition, with the right-hand-side operands having delayed operations template<typename eT> template<typename T1, typename T2, typename glue_type> inline const Mat<eT>& Mat<eT>::operator+=(const Glue<T1, T2, glue_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); arma_type_check(( is_same_type< eT, typename T2::elem_type >::value == false )); const Mat<eT> m(X); return (*this).operator+=(m); } //! in-place matrix subtraction, with the right-hand-side operands having delayed operations template<typename eT> template<typename T1, typename T2, typename glue_type> inline const Mat<eT>& Mat<eT>::operator-=(const Glue<T1, T2, glue_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); arma_type_check(( is_same_type< eT, typename T2::elem_type >::value == false )); const Mat<eT> m(X); return (*this).operator-=(m); } //! in-place matrix multiplications, with the right-hand-side operands having delayed operations template<typename eT> template<typename T1, typename T2, typename glue_type> inline const Mat<eT>& Mat<eT>::operator*=(const Glue<T1, T2, glue_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); arma_type_check(( is_same_type< eT, typename T2::elem_type >::value == false )); glue_times::apply_inplace(*this, X); return *this; } //! in-place matrix element-wise multiplication, with the right-hand-side operands having delayed operations template<typename eT> template<typename T1, typename T2, typename glue_type> inline const Mat<eT>& Mat<eT>::operator%=(const Glue<T1, T2, glue_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); arma_type_check(( is_same_type< eT, typename T2::elem_type >::value == false )); const Mat<eT> m(X); return (*this).operator%=(m); } //! in-place matrix element-wise division, with the right-hand-side operands having delayed operations template<typename eT> template<typename T1, typename T2, typename glue_type> inline const Mat<eT>& Mat<eT>::operator/=(const Glue<T1, T2, glue_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); arma_type_check(( is_same_type< eT, typename T2::elem_type >::value == false )); const Mat<eT> m(X); return (*this).operator/=(m); } template<typename eT> template<typename T1, typename T2> inline const Mat<eT>& Mat<eT>::operator+=(const Glue<T1, T2, glue_times>& X) { arma_extra_debug_sigprint(); glue_times::apply_inplace_plus(*this, X, sword(+1)); return *this; } template<typename eT> template<typename T1, typename T2> inline const Mat<eT>& Mat<eT>::operator-=(const Glue<T1, T2, glue_times>& X) { arma_extra_debug_sigprint(); glue_times::apply_inplace_plus(*this, X, sword(-1)); return *this; } //! create a matrix from eGlue, i.e. run the previously delayed binary operations template<typename eT> template<typename T1, typename T2, typename eglue_type> inline Mat<eT>::Mat(const eGlue<T1, T2, eglue_type>& X) : n_rows(X.get_n_rows()) , n_cols(X.get_n_cols()) , n_elem(X.get_n_elem()) , vec_state(0) , mem_state(0) , mem() { arma_extra_debug_sigprint_this(this); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); arma_type_check(( is_same_type< eT, typename T2::elem_type >::value == false )); init_cold(); eglue_type::apply(*this, X); } //! create a matrix from eGlue, i.e. run the previously delayed binary operations template<typename eT> template<typename T1, typename T2, typename eglue_type> inline const Mat<eT>& Mat<eT>::operator=(const eGlue<T1, T2, eglue_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); arma_type_check(( is_same_type< eT, typename T2::elem_type >::value == false )); const bool bad_alias = ( (eGlue<T1, T2, eglue_type>::proxy1_type::has_subview && X.P1.is_alias(*this)) || (eGlue<T1, T2, eglue_type>::proxy2_type::has_subview && X.P2.is_alias(*this)) ); if(bad_alias == false) { init_warm(X.get_n_rows(), X.get_n_cols()); eglue_type::apply(*this, X); } else { arma_extra_debug_print("bad_alias = true"); Mat<eT> tmp(X); steal_mem(tmp); } return *this; } //! in-place matrix addition, with the right-hand-side operands having delayed operations template<typename eT> template<typename T1, typename T2, typename eglue_type> inline const Mat<eT>& Mat<eT>::operator+=(const eGlue<T1, T2, eglue_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); arma_type_check(( is_same_type< eT, typename T2::elem_type >::value == false )); eglue_type::apply_inplace_plus(*this, X); return *this; } //! in-place matrix subtraction, with the right-hand-side operands having delayed operations template<typename eT> template<typename T1, typename T2, typename eglue_type> inline const Mat<eT>& Mat<eT>::operator-=(const eGlue<T1, T2, eglue_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); arma_type_check(( is_same_type< eT, typename T2::elem_type >::value == false )); eglue_type::apply_inplace_minus(*this, X); return *this; } template<typename eT> template<typename T1, typename T2, typename eglue_type> inline const Mat<eT>& Mat<eT>::operator*=(const eGlue<T1, T2, eglue_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); arma_type_check(( is_same_type< eT, typename T2::elem_type >::value == false )); glue_times::apply_inplace(*this, X); return *this; } template<typename eT> template<typename T1, typename T2, typename eglue_type> inline const Mat<eT>& Mat<eT>::operator%=(const eGlue<T1, T2, eglue_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); arma_type_check(( is_same_type< eT, typename T2::elem_type >::value == false )); eglue_type::apply_inplace_schur(*this, X); return *this; } template<typename eT> template<typename T1, typename T2, typename eglue_type> inline const Mat<eT>& Mat<eT>::operator/=(const eGlue<T1, T2, eglue_type>& X) { arma_extra_debug_sigprint(); arma_type_check(( is_same_type< eT, typename T1::elem_type >::value == false )); arma_type_check(( is_same_type< eT, typename T2::elem_type >::value == false )); eglue_type::apply_inplace_div(*this, X); return *this; } //! EXPERIMENTAL: create a matrix from mtGlue, i.e. run the previously delayed binary operations template<typename eT> template<typename T1, typename T2, typename glue_type> inline Mat<eT>::Mat(const mtGlue<eT, T1, T2, glue_type>& X) : n_rows(0) , n_cols(0) , n_elem(0) , vec_state(0) , mem_state(0) , mem() { arma_extra_debug_sigprint_this(this); glue_type::apply(*this, X); } //! EXPERIMENTAL: create a matrix from Glue, i.e. run the previously delayed binary operations template<typename eT> template<typename T1, typename T2, typename glue_type> inline const Mat<eT>& Mat<eT>::operator=(const mtGlue<eT, T1, T2, glue_type>& X) { arma_extra_debug_sigprint(); glue_type::apply(*this, X); return *this; } //! EXPERIMENTAL: in-place matrix addition, with the right-hand-side operands having delayed operations template<typename eT> template<typename T1, typename T2, typename glue_type> inline const Mat<eT>& Mat<eT>::operator+=(const mtGlue<eT, T1, T2, glue_type>& X) { arma_extra_debug_sigprint(); const Mat<eT> m(X); return (*this).operator+=(m); } //! EXPERIMENTAL: in-place matrix subtraction, with the right-hand-side operands having delayed operations template<typename eT> template<typename T1, typename T2, typename glue_type> inline const Mat<eT>& Mat<eT>::operator-=(const mtGlue<eT, T1, T2, glue_type>& X) { arma_extra_debug_sigprint(); const Mat<eT> m(X); return (*this).operator-=(m); } //! EXPERIMENTAL: in-place matrix multiplications, with the right-hand-side operands having delayed operations template<typename eT> template<typename T1, typename T2, typename glue_type> inline const Mat<eT>& Mat<eT>::operator*=(const mtGlue<eT, T1, T2, glue_type>& X) { arma_extra_debug_sigprint(); const Mat<eT> m(X); glue_times::apply_inplace(*this, m); return *this; } //! EXPERIMENTAL: in-place matrix element-wise multiplication, with the right-hand-side operands having delayed operations template<typename eT> template<typename T1, typename T2, typename glue_type> inline const Mat<eT>& Mat<eT>::operator%=(const mtGlue<eT, T1, T2, glue_type>& X) { arma_extra_debug_sigprint(); const Mat<eT> m(X); return (*this).operator%=(m); } //! EXPERIMENTAL: in-place matrix element-wise division, with the right-hand-side operands having delayed operations template<typename eT> template<typename T1, typename T2, typename glue_type> inline const Mat<eT>& Mat<eT>::operator/=(const mtGlue<eT, T1, T2, glue_type>& X) { arma_extra_debug_sigprint(); const Mat<eT> m(X); return (*this).operator/=(m); } //! linear element accessor (treats the matrix as a vector); no bounds check; assumes memory is aligned template<typename eT> arma_inline arma_warn_unused const eT& Mat<eT>::at_alt(const uword ii) const { const eT* mem_aligned = mem; memory::mark_as_aligned(mem_aligned); return mem_aligned[ii]; } //! linear element accessor (treats the matrix as a vector); bounds checking not done when ARMA_NO_DEBUG is defined template<typename eT> arma_inline arma_warn_unused eT& Mat<eT>::operator() (const uword ii) { arma_debug_check( (ii >= n_elem), "Mat::operator(): index out of bounds"); return access::rw(mem[ii]); } //! linear element accessor (treats the matrix as a vector); bounds checking not done when ARMA_NO_DEBUG is defined template<typename eT> arma_inline arma_warn_unused const eT& Mat<eT>::operator() (const uword ii) const { arma_debug_check( (ii >= n_elem), "Mat::operator(): index out of bounds"); return mem[ii]; } //! linear element accessor (treats the matrix as a vector); no bounds check. template<typename eT> arma_inline arma_warn_unused eT& Mat<eT>::operator[] (const uword ii) { return access::rw(mem[ii]); } //! linear element accessor (treats the matrix as a vector); no bounds check template<typename eT> arma_inline arma_warn_unused const eT& Mat<eT>::operator[] (const uword ii) const { return mem[ii]; } //! linear element accessor (treats the matrix as a vector); no bounds check. template<typename eT> arma_inline arma_warn_unused eT& Mat<eT>::at(const uword ii) { return access::rw(mem[ii]); } //! linear element accessor (treats the matrix as a vector); no bounds check template<typename eT> arma_inline arma_warn_unused const eT& Mat<eT>::at(const uword ii) const { return mem[ii]; } //! element accessor; bounds checking not done when ARMA_NO_DEBUG is defined template<typename eT> arma_inline arma_warn_unused eT& Mat<eT>::operator() (const uword in_row, const uword in_col) { arma_debug_check( ((in_row >= n_rows) || (in_col >= n_cols)), "Mat::operator(): index out of bounds"); return access::rw(mem[in_row + in_col*n_rows]); } //! element accessor; bounds checking not done when ARMA_NO_DEBUG is defined template<typename eT> arma_inline arma_warn_unused const eT& Mat<eT>::operator() (const uword in_row, const uword in_col) const { arma_debug_check( ((in_row >= n_rows) || (in_col >= n_cols)), "Mat::operator(): index out of bounds"); return mem[in_row + in_col*n_rows]; } //! element accessor; no bounds check template<typename eT> arma_inline arma_warn_unused eT& Mat<eT>::at(const uword in_row, const uword in_col) { return access::rw( mem[in_row + in_col*n_rows] ); } //! element accessor; no bounds check template<typename eT> arma_inline arma_warn_unused const eT& Mat<eT>::at(const uword in_row, const uword in_col) const { return mem[in_row + in_col*n_rows]; } //! prefix ++ template<typename eT> arma_inline const Mat<eT>& Mat<eT>::operator++() { Mat_aux::prefix_pp(*this); return *this; } //! postfix ++ (must not return the object by reference) template<typename eT> arma_inline void Mat<eT>::operator++(int) { Mat_aux::postfix_pp(*this); } //! prefix -- template<typename eT> arma_inline const Mat<eT>& Mat<eT>::operator--() { Mat_aux::prefix_mm(*this); return *this; } //! postfix -- (must not return the object by reference) template<typename eT> arma_inline void Mat<eT>::operator--(int) { Mat_aux::postfix_mm(*this); } //! returns true if the matrix has no elements template<typename eT> arma_inline arma_warn_unused bool Mat<eT>::is_empty() const { return (n_elem == 0); } //! returns true if the object can be interpreted as a column or row vector template<typename eT> arma_inline arma_warn_unused bool Mat<eT>::is_vec() const { return ( (n_rows == 1) || (n_cols == 1) ); } //! returns true if the object can be interpreted as a row vector template<typename eT> arma_inline arma_warn_unused bool Mat<eT>::is_rowvec() const { return (n_rows == 1); } //! returns true if the object can be interpreted as a column vector template<typename eT> arma_inline arma_warn_unused bool Mat<eT>::is_colvec() const { return (n_cols == 1); } //! returns true if the object has the same number of non-zero rows and columnns template<typename eT> arma_inline arma_warn_unused bool Mat<eT>::is_square() const { return (n_rows == n_cols); } //! returns true if all of the elements are finite template<typename eT> inline arma_warn_unused bool Mat<eT>::is_finite() const { return arrayops::is_finite( memptr(), n_elem ); } //! returns true if the given index is currently in range template<typename eT> arma_inline arma_warn_unused bool Mat<eT>::in_range(const uword ii) const { return (ii < n_elem); } //! returns true if the given start and end indices are currently in range template<typename eT> arma_inline arma_warn_unused bool Mat<eT>::in_range(const span& x) const { arma_extra_debug_sigprint(); if(x.whole == true) { return true; } else { const uword a = x.a; const uword b = x.b; return ( (a <= b) && (b < n_elem) ); } } //! returns true if the given location is currently in range template<typename eT> arma_inline arma_warn_unused bool Mat<eT>::in_range(const uword in_row, const uword in_col) const { return ( (in_row < n_rows) && (in_col < n_cols) ); } template<typename eT> arma_inline arma_warn_unused bool Mat<eT>::in_range(const span& row_span, const uword in_col) const { arma_extra_debug_sigprint(); if(row_span.whole == true) { return (in_col < n_cols); } else { const uword in_row1 = row_span.a; const uword in_row2 = row_span.b; return ( (in_row1 <= in_row2) && (in_row2 < n_rows) && (in_col < n_cols) ); } } template<typename eT> arma_inline arma_warn_unused bool Mat<eT>::in_range(const uword in_row, const span& col_span) const { arma_extra_debug_sigprint(); if(col_span.whole == true) { return (in_row < n_rows); } else { const uword in_col1 = col_span.a; const uword in_col2 = col_span.b; return ( (in_row < n_rows) && (in_col1 <= in_col2) && (in_col2 < n_cols) ); } } template<typename eT> arma_inline arma_warn_unused bool Mat<eT>::in_range(const span& row_span, const span& col_span) const { arma_extra_debug_sigprint(); const uword in_row1 = row_span.a; const uword in_row2 = row_span.b; const uword in_col1 = col_span.a; const uword in_col2 = col_span.b; const bool rows_ok = row_span.whole ? true : ( (in_row1 <= in_row2) && (in_row2 < n_rows) ); const bool cols_ok = col_span.whole ? true : ( (in_col1 <= in_col2) && (in_col2 < n_cols) ); return ( (rows_ok == true) && (cols_ok == true) ); } //! returns a pointer to array of eTs for a specified column; no bounds check template<typename eT> arma_inline arma_warn_unused eT* Mat<eT>::colptr(const uword in_col) { return & access::rw(mem[in_col*n_rows]); } //! returns a pointer to array of eTs for a specified column; no bounds check template<typename eT> arma_inline arma_warn_unused const eT* Mat<eT>::colptr(const uword in_col) const { return & mem[in_col*n_rows]; } //! returns a pointer to array of eTs used by the matrix template<typename eT> arma_inline arma_warn_unused eT* Mat<eT>::memptr() { return const_cast<eT*>(mem); } //! returns a pointer to array of eTs used by the matrix template<typename eT> arma_inline arma_warn_unused const eT* Mat<eT>::memptr() const { return mem; } //! print contents of the matrix (to the cout stream), //! optionally preceding with a user specified line of text. //! the precision and cell width are modified. //! on return, the stream's state are restored to their original values. template<typename eT> inline void Mat<eT>::impl_print(const std::string& extra_text) const { arma_extra_debug_sigprint(); if(extra_text.length() != 0) { const std::streamsize orig_width = ARMA_DEFAULT_OSTREAM.width(); ARMA_DEFAULT_OSTREAM << extra_text << '\n'; ARMA_DEFAULT_OSTREAM.width(orig_width); } arma_ostream::print(ARMA_DEFAULT_OSTREAM, *this, true); } //! print contents of the matrix to a user specified stream, //! optionally preceding with a user specified line of text. //! the precision and cell width are modified. //! on return, the stream's state are restored to their original values. template<typename eT> inline void Mat<eT>::impl_print(std::ostream& user_stream, const std::string& extra_text) const { arma_extra_debug_sigprint(); if(extra_text.length() != 0) { const std::streamsize orig_width = user_stream.width(); user_stream << extra_text << '\n'; user_stream.width(orig_width); } arma_ostream::print(user_stream, *this, true); } //! print contents of the matrix (to the cout stream), //! optionally preceding with a user specified line of text. //! the stream's state are used as is and are not modified //! (i.e. the precision and cell width are not modified). template<typename eT> inline void Mat<eT>::impl_raw_print(const std::string& extra_text) const { arma_extra_debug_sigprint(); if(extra_text.length() != 0) { const std::streamsize orig_width = ARMA_DEFAULT_OSTREAM.width(); ARMA_DEFAULT_OSTREAM << extra_text << '\n'; ARMA_DEFAULT_OSTREAM.width(orig_width); } arma_ostream::print(ARMA_DEFAULT_OSTREAM, *this, false); } //! print contents of the matrix to a user specified stream, //! optionally preceding with a user specified line of text. //! the stream's state are used as is and are not modified. //! (i.e. the precision and cell width are not modified). template<typename eT> inline void Mat<eT>::impl_raw_print(std::ostream& user_stream, const std::string& extra_text) const { arma_extra_debug_sigprint(); if(extra_text.length() != 0) { const std::streamsize orig_width = user_stream.width(); user_stream << extra_text << '\n'; user_stream.width(orig_width); } arma_ostream::print(user_stream, *this, false); } //! change the matrix to have user specified dimensions (data is not preserved) template<typename eT> inline void Mat<eT>::set_size(const uword in_elem) { arma_extra_debug_sigprint(); switch(vec_state) { case 0: case 1: init_warm(in_elem, 1); break; case 2: init_warm(1, in_elem); break; default: ; } } //! change the matrix to have user specified dimensions (data is not preserved) template<typename eT> inline void Mat<eT>::set_size(const uword in_rows, const uword in_cols) { arma_extra_debug_sigprint(); init_warm(in_rows, in_cols); } //! change the matrix to have user specified dimensions (data is preserved) template<typename eT> inline void Mat<eT>::resize(const uword in_elem) { arma_extra_debug_sigprint(); switch(vec_state) { case 0: case 1: (*this).resize(in_elem, 1); break; case 2: (*this).resize(1, in_elem); break; default: ; } } //! change the matrix to have user specified dimensions (data is preserved) template<typename eT> inline void Mat<eT>::resize(const uword in_rows, const uword in_cols) { arma_extra_debug_sigprint(); *this = arma::resize(*this, in_rows, in_cols); } //! change the matrix to have user specified dimensions (data is preserved) template<typename eT> inline void Mat<eT>::reshape(const uword in_rows, const uword in_cols, const uword dim) { arma_extra_debug_sigprint(); *this = arma::reshape(*this, in_rows, in_cols, dim); } //! change the matrix (without preserving data) to have the same dimensions as the given expression template<typename eT> template<typename eT2, typename expr> inline void Mat<eT>::copy_size(const Base<eT2, expr>& X) { arma_extra_debug_sigprint(); const Proxy<expr> P(X.get_ref()); const uword X_n_rows = P.get_n_rows(); const uword X_n_cols = P.get_n_cols(); init_warm(X_n_rows, X_n_cols); } //! transform each element in the matrix using a functor template<typename eT> template<typename functor> inline const Mat<eT>& Mat<eT>::transform(functor F) { arma_extra_debug_sigprint(); eT* out_mem = memptr(); const uword N = n_elem; uword ii, jj; for(ii=0, jj=1; jj < N; ii+=2, jj+=2) { eT tmp_ii = out_mem[ii]; eT tmp_jj = out_mem[jj]; tmp_ii = eT( F(tmp_ii) ); tmp_jj = eT( F(tmp_jj) ); out_mem[ii] = tmp_ii; out_mem[jj] = tmp_jj; } if(ii < N) { out_mem[ii] = eT( F(out_mem[ii]) ); } return *this; } //! imbue (fill) the matrix with values provided by a functor template<typename eT> template<typename functor> inline const Mat<eT>& Mat<eT>::imbue(functor F) { arma_extra_debug_sigprint(); eT* out_mem = memptr(); const uword N = n_elem; uword ii, jj; for(ii=0, jj=1; jj < N; ii+=2, jj+=2) { const eT tmp_ii = eT( F() ); const eT tmp_jj = eT( F() ); out_mem[ii] = tmp_ii; out_mem[jj] = tmp_jj; } if(ii < N) { out_mem[ii] = eT( F() ); } return *this; } //! fill the matrix with the specified value template<typename eT> arma_hot inline const Mat<eT>& Mat<eT>::fill(const eT val) { arma_extra_debug_sigprint(); arrayops::inplace_set( memptr(), val, n_elem ); return *this; } template<typename eT> inline const Mat<eT>& Mat<eT>::zeros() { arma_extra_debug_sigprint(); return fill(eT(0)); } template<typename eT> inline const Mat<eT>& Mat<eT>::zeros(const uword in_elem) { arma_extra_debug_sigprint(); set_size(in_elem); return fill(eT(0)); } template<typename eT> inline const Mat<eT>& Mat<eT>::zeros(const uword in_rows, const uword in_cols) { arma_extra_debug_sigprint(); set_size(in_rows, in_cols); return fill(eT(0)); } template<typename eT> inline const Mat<eT>& Mat<eT>::ones() { arma_extra_debug_sigprint(); return fill(eT(1)); } template<typename eT> inline const Mat<eT>& Mat<eT>::ones(const uword in_elem) { arma_extra_debug_sigprint(); set_size(in_elem); return fill(eT(1)); } template<typename eT> inline const Mat<eT>& Mat<eT>::ones(const uword in_rows, const uword in_cols) { arma_extra_debug_sigprint(); set_size(in_rows, in_cols); return fill(eT(1)); } template<typename eT> inline const Mat<eT>& Mat<eT>::randu() { arma_extra_debug_sigprint(); eop_aux_randu<eT>::fill( memptr(), n_elem ); return *this; } template<typename eT> inline const Mat<eT>& Mat<eT>::randu(const uword in_elem) { arma_extra_debug_sigprint(); set_size(in_elem); return (*this).randu(); } template<typename eT> inline const Mat<eT>& Mat<eT>::randu(const uword in_rows, const uword in_cols) { arma_extra_debug_sigprint(); set_size(in_rows, in_cols); return (*this).randu(); } template<typename eT> inline const Mat<eT>& Mat<eT>::randn() { arma_extra_debug_sigprint(); eop_aux_randn<eT>::fill( memptr(), n_elem ); return *this; } template<typename eT> inline const Mat<eT>& Mat<eT>::randn(const uword in_elem) { arma_extra_debug_sigprint(); set_size(in_elem); return (*this).randn(); } template<typename eT> inline const Mat<eT>& Mat<eT>::randn(const uword in_rows, const uword in_cols) { arma_extra_debug_sigprint(); set_size(in_rows, in_cols); return (*this).randn(); } template<typename eT> inline const Mat<eT>& Mat<eT>::eye() { arma_extra_debug_sigprint(); fill(eT(0)); const uword N = (std::min)(n_rows, n_cols); for(uword ii=0; ii<N; ++ii) { at(ii,ii) = eT(1); } return *this; } template<typename eT> inline const Mat<eT>& Mat<eT>::eye(const uword in_rows, const uword in_cols) { arma_extra_debug_sigprint(); set_size(in_rows, in_cols); return (*this).eye(); } template<typename eT> inline void Mat<eT>::reset() { arma_extra_debug_sigprint(); switch(vec_state) { default: init_warm(0, 0); break; case 1: init_warm(0, 1); break; case 2: init_warm(1, 0); break; } } template<typename eT> template<typename T1> inline void Mat<eT>::set_real(const Base<typename Mat<eT>::pod_type,T1>& X) { arma_extra_debug_sigprint(); Mat_aux::set_real(*this, X); } template<typename eT> template<typename T1> inline void Mat<eT>::set_imag(const Base<typename Mat<eT>::pod_type,T1>& X) { arma_extra_debug_sigprint(); Mat_aux::set_imag(*this, X); } template<typename eT> inline arma_warn_unused eT Mat<eT>::min() const { arma_extra_debug_sigprint(); arma_debug_check( (n_elem == 0), "min(): object has no elements" ); return op_min::direct_min(memptr(), n_elem); } template<typename eT> inline arma_warn_unused eT Mat<eT>::max() const { arma_extra_debug_sigprint(); arma_debug_check( (n_elem == 0), "max(): object has no elements" ); return op_max::direct_max(memptr(), n_elem); } template<typename eT> inline eT Mat<eT>::min(uword& index_of_min_val) const { arma_extra_debug_sigprint(); arma_debug_check( (n_elem == 0), "min(): object has no elements" ); return op_min::direct_min(memptr(), n_elem, index_of_min_val); } template<typename eT> inline eT Mat<eT>::max(uword& index_of_max_val) const { arma_extra_debug_sigprint(); arma_debug_check( (n_elem == 0), "max(): object has no elements" ); return op_max::direct_max(memptr(), n_elem, index_of_max_val); } template<typename eT> inline eT Mat<eT>::min(uword& row_of_min_val, uword& col_of_min_val) const { arma_extra_debug_sigprint(); arma_debug_check( (n_elem == 0), "min(): object has no elements" ); uword iq; eT val = op_min::direct_min(memptr(), n_elem, iq); row_of_min_val = iq % n_rows; col_of_min_val = iq / n_rows; return val; } template<typename eT> inline eT Mat<eT>::max(uword& row_of_max_val, uword& col_of_max_val) const { arma_extra_debug_sigprint(); arma_debug_check( (n_elem == 0), "max(): object has no elements" ); uword iq; eT val = op_max::direct_max(memptr(), n_elem, iq); row_of_max_val = iq % n_rows; col_of_max_val = iq / n_rows; return val; } //! save the matrix to a file template<typename eT> inline bool Mat<eT>::save(const std::string name, const file_type type, const bool print_status) const { arma_extra_debug_sigprint(); bool save_okay; switch(type) { case raw_ascii: save_okay = diskio::save_raw_ascii(*this, name); break; case arma_ascii: save_okay = diskio::save_arma_ascii(*this, name); break; case csv_ascii: save_okay = diskio::save_csv_ascii(*this, name); break; case raw_binary: save_okay = diskio::save_raw_binary(*this, name); break; case arma_binary: save_okay = diskio::save_arma_binary(*this, name); break; case pgm_binary: save_okay = diskio::save_pgm_binary(*this, name); break; case hdf5_binary: save_okay = diskio::save_hdf5_binary(*this, name); break; default: arma_warn(print_status, "Mat::save(): unsupported file type"); save_okay = false; } arma_warn( (print_status && (save_okay == false)), "Mat::save(): couldn't write to ", name); return save_okay; } //! save the matrix to a stream template<typename eT> inline bool Mat<eT>::save(std::ostream& os, const file_type type, const bool print_status) const { arma_extra_debug_sigprint(); bool save_okay; switch(type) { case raw_ascii: save_okay = diskio::save_raw_ascii(*this, os); break; case arma_ascii: save_okay = diskio::save_arma_ascii(*this, os); break; case csv_ascii: save_okay = diskio::save_csv_ascii(*this, os); break; case raw_binary: save_okay = diskio::save_raw_binary(*this, os); break; case arma_binary: save_okay = diskio::save_arma_binary(*this, os); break; case pgm_binary: save_okay = diskio::save_pgm_binary(*this, os); break; default: arma_warn(print_status, "Mat::save(): unsupported file type"); save_okay = false; } arma_warn( (print_status && (save_okay == false)), "Mat::save(): couldn't write to the given stream"); return save_okay; } //! load a matrix from a file template<typename eT> inline bool Mat<eT>::load(const std::string name, const file_type type, const bool print_status) { arma_extra_debug_sigprint(); bool load_okay; std::string err_msg; switch(type) { case auto_detect: load_okay = diskio::load_auto_detect(*this, name, err_msg); break; case raw_ascii: load_okay = diskio::load_raw_ascii(*this, name, err_msg); break; case arma_ascii: load_okay = diskio::load_arma_ascii(*this, name, err_msg); break; case csv_ascii: load_okay = diskio::load_csv_ascii(*this, name, err_msg); break; case raw_binary: load_okay = diskio::load_raw_binary(*this, name, err_msg); break; case arma_binary: load_okay = diskio::load_arma_binary(*this, name, err_msg); break; case pgm_binary: load_okay = diskio::load_pgm_binary(*this, name, err_msg); break; case hdf5_binary: load_okay = diskio::load_hdf5_binary(*this, name, err_msg); break; default: arma_warn(print_status, "Mat::load(): unsupported file type"); load_okay = false; } if( (print_status == true) && (load_okay == false) ) { if(err_msg.length() > 0) { arma_warn(true, "Mat::load(): ", err_msg, name); } else { arma_warn(true, "Mat::load(): couldn't read ", name); } } if(load_okay == false) { (*this).reset(); } return load_okay; } //! load a matrix from a stream template<typename eT> inline bool Mat<eT>::load(std::istream& is, const file_type type, const bool print_status) { arma_extra_debug_sigprint(); bool load_okay; std::string err_msg; switch(type) { case auto_detect: load_okay = diskio::load_auto_detect(*this, is, err_msg); break; case raw_ascii: load_okay = diskio::load_raw_ascii(*this, is, err_msg); break; case arma_ascii: load_okay = diskio::load_arma_ascii(*this, is, err_msg); break; case csv_ascii: load_okay = diskio::load_csv_ascii(*this, is, err_msg); break; case raw_binary: load_okay = diskio::load_raw_binary(*this, is, err_msg); break; case arma_binary: load_okay = diskio::load_arma_binary(*this, is, err_msg); break; case pgm_binary: load_okay = diskio::load_pgm_binary(*this, is, err_msg); break; default: arma_warn(print_status, "Mat::load(): unsupported file type"); load_okay = false; } if( (print_status == true) && (load_okay == false) ) { if(err_msg.length() > 0) { arma_warn(true, "Mat::load(): ", err_msg, "the given stream"); } else { arma_warn(true, "Mat::load(): couldn't load from the given stream"); } } if(load_okay == false) { (*this).reset(); } return load_okay; } //! save the matrix to a file, without printing any error messages template<typename eT> inline bool Mat<eT>::quiet_save(const std::string name, const file_type type) const { arma_extra_debug_sigprint(); return (*this).save(name, type, false); } //! save the matrix to a stream, without printing any error messages template<typename eT> inline bool Mat<eT>::quiet_save(std::ostream& os, const file_type type) const { arma_extra_debug_sigprint(); return (*this).save(os, type, false); } //! load a matrix from a file, without printing any error messages template<typename eT> inline bool Mat<eT>::quiet_load(const std::string name, const file_type type) { arma_extra_debug_sigprint(); return (*this).load(name, type, false); } //! load a matrix from a stream, without printing any error messages template<typename eT> inline bool Mat<eT>::quiet_load(std::istream& is, const file_type type) { arma_extra_debug_sigprint(); return (*this).load(is, type, false); } template<typename eT> inline Mat<eT>::row_iterator::row_iterator(Mat<eT>& in_M, const uword in_row) : M (in_M ) , row(in_row) , col(0 ) { arma_extra_debug_sigprint(); } template<typename eT> inline eT& Mat<eT>::row_iterator::operator*() { return M.at(row,col); } template<typename eT> inline typename Mat<eT>::row_iterator& Mat<eT>::row_iterator::operator++() { ++col; if(col >= M.n_cols) { col = 0; ++row; } return *this; } template<typename eT> inline void Mat<eT>::row_iterator::operator++(int) { operator++(); } template<typename eT> inline typename Mat<eT>::row_iterator& Mat<eT>::row_iterator::operator--() { if(col > 0) { --col; } else { if(row > 0) { col = M.n_cols - 1; --row; } } return *this; } template<typename eT> inline void Mat<eT>::row_iterator::operator--(int) { operator--(); } template<typename eT> inline bool Mat<eT>::row_iterator::operator!=(const typename Mat<eT>::row_iterator& X) const { return ( (row != X.row) || (col != X.col) ) ? true : false; } template<typename eT> inline bool Mat<eT>::row_iterator::operator==(const typename Mat<eT>::row_iterator& X) const { return ( (row == X.row) && (col == X.col) ) ? true : false; } template<typename eT> inline Mat<eT>::const_row_iterator::const_row_iterator(const Mat<eT>& in_M, const uword in_row) : M (in_M ) , row(in_row) , col(0 ) { arma_extra_debug_sigprint(); } template<typename eT> inline Mat<eT>::const_row_iterator::const_row_iterator(const typename Mat<eT>::row_iterator& X) : M (X.M) , row(X.row) , col(X.col) { arma_extra_debug_sigprint(); } template<typename eT> inline eT Mat<eT>::const_row_iterator::operator*() const { return M.at(row,col); } template<typename eT> inline typename Mat<eT>::const_row_iterator& Mat<eT>::const_row_iterator::operator++() { ++col; if(col >= M.n_cols) { col = 0; ++row; } return *this; } template<typename eT> inline void Mat<eT>::const_row_iterator::operator++(int) { operator++(); } template<typename eT> inline typename Mat<eT>::const_row_iterator& Mat<eT>::const_row_iterator::operator--() { if(col > 0) { --col; } else { if(row > 0) { col = M.n_cols - 1; --row; } } return *this; } template<typename eT> inline void Mat<eT>::const_row_iterator::operator--(int) { operator--(); } template<typename eT> inline bool Mat<eT>::const_row_iterator::operator!=(const typename Mat<eT>::const_row_iterator& X) const { return ( (row != X.row) || (col != X.col) ) ? true : false; } template<typename eT> inline bool Mat<eT>::const_row_iterator::operator==(const typename Mat<eT>::const_row_iterator& X) const { return ( (row == X.row) && (col == X.col) ) ? true : false; } template<typename eT> inline typename Mat<eT>::iterator Mat<eT>::begin() { arma_extra_debug_sigprint(); return memptr(); } template<typename eT> inline typename Mat<eT>::const_iterator Mat<eT>::begin() const { arma_extra_debug_sigprint(); return memptr(); } template<typename eT> inline typename Mat<eT>::const_iterator Mat<eT>::cbegin() const { arma_extra_debug_sigprint(); return memptr(); } template<typename eT> inline typename Mat<eT>::iterator Mat<eT>::end() { arma_extra_debug_sigprint(); return memptr() + n_elem; } template<typename eT> inline typename Mat<eT>::const_iterator Mat<eT>::end() const { arma_extra_debug_sigprint(); return memptr() + n_elem; } template<typename eT> inline typename Mat<eT>::const_iterator Mat<eT>::cend() const { arma_extra_debug_sigprint(); return memptr() + n_elem; } template<typename eT> inline typename Mat<eT>::col_iterator Mat<eT>::begin_col(const uword col_num) { arma_extra_debug_sigprint(); arma_debug_check( (col_num >= n_cols), "begin_col(): index out of bounds"); return colptr(col_num); } template<typename eT> inline typename Mat<eT>::const_col_iterator Mat<eT>::begin_col(const uword col_num) const { arma_extra_debug_sigprint(); arma_debug_check( (col_num >= n_cols), "begin_col(): index out of bounds"); return colptr(col_num); } template<typename eT> inline typename Mat<eT>::col_iterator Mat<eT>::end_col(const uword col_num) { arma_extra_debug_sigprint(); arma_debug_check( (col_num >= n_cols), "end_col(): index out of bounds"); return colptr(col_num) + n_rows; } template<typename eT> inline typename Mat<eT>::const_col_iterator Mat<eT>::end_col(const uword col_num) const { arma_extra_debug_sigprint(); arma_debug_check( (col_num >= n_cols), "end_col(): index out of bounds"); return colptr(col_num) + n_rows; } template<typename eT> inline typename Mat<eT>::row_iterator Mat<eT>::begin_row(const uword row_num) { arma_extra_debug_sigprint(); arma_debug_check( (row_num >= n_rows), "Mat::begin_row(): index out of bounds" ); return typename Mat<eT>::row_iterator(*this, row_num); } template<typename eT> inline typename Mat<eT>::const_row_iterator Mat<eT>::begin_row(const uword row_num) const { arma_extra_debug_sigprint(); arma_debug_check( (row_num >= n_rows), "Mat::begin_row(): index out of bounds" ); return typename Mat<eT>::const_row_iterator(*this, row_num); } template<typename eT> inline typename Mat<eT>::row_iterator Mat<eT>::end_row(const uword row_num) { arma_extra_debug_sigprint(); arma_debug_check( (row_num >= n_rows), "Mat::end_row(): index out of bounds" ); return typename Mat<eT>::row_iterator(*this, row_num + 1); } template<typename eT> inline typename Mat<eT>::const_row_iterator Mat<eT>::end_row(const uword row_num) const { arma_extra_debug_sigprint(); arma_debug_check( (row_num >= n_rows), "Mat::end_row(): index out of bounds" ); return typename Mat<eT>::const_row_iterator(*this, row_num + 1); } //! resets this matrix to an empty matrix template<typename eT> inline void Mat<eT>::clear() { reset(); } //! returns true if the matrix has no elements template<typename eT> inline bool Mat<eT>::empty() const { return (n_elem == 0); } //! returns the number of elements in this matrix template<typename eT> inline uword Mat<eT>::size() const { return n_elem; } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> arma_inline Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::fixed() : Mat<eT>( arma_fixed_indicator(), fixed_n_rows, fixed_n_cols, 0, ((use_extra) ? mem_local_extra : mem_local) ) { arma_extra_debug_sigprint_this(this); } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> arma_inline Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::fixed(const fixed<fixed_n_rows, fixed_n_cols>& X) : Mat<eT>( arma_fixed_indicator(), fixed_n_rows, fixed_n_cols, 0, ((use_extra) ? mem_local_extra : mem_local) ) { arma_extra_debug_sigprint_this(this); eT* dest = (use_extra) ? mem_local_extra : mem_local; arrayops::copy( dest, X.mem, fixed_n_elem ); } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> template<typename T1> inline Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::fixed(const Base<eT,T1>& A) : Mat<eT>( arma_fixed_indicator(), fixed_n_rows, fixed_n_cols, 0, ((use_extra) ? mem_local_extra : mem_local) ) { arma_extra_debug_sigprint_this(this); Mat<eT>::operator=(A.get_ref()); } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> template<typename T1, typename T2> inline Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::fixed(const Base<pod_type,T1>& A, const Base<pod_type,T2>& B) : Mat<eT>( arma_fixed_indicator(), fixed_n_rows, fixed_n_cols, 0, ((use_extra) ? mem_local_extra : mem_local) ) { arma_extra_debug_sigprint_this(this); Mat<eT>::init(A,B); } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> inline Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::fixed(const eT* aux_mem) : Mat<eT>( arma_fixed_indicator(), fixed_n_rows, fixed_n_cols, 0, ((use_extra) ? mem_local_extra : mem_local) ) { arma_extra_debug_sigprint_this(this); eT* dest = (use_extra) ? mem_local_extra : mem_local; arrayops::copy( dest, aux_mem, fixed_n_elem ); } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> inline Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::fixed(const char* text) : Mat<eT>( arma_fixed_indicator(), fixed_n_rows, fixed_n_cols, 0, ((use_extra) ? mem_local_extra : mem_local) ) { arma_extra_debug_sigprint_this(this); Mat<eT>::operator=(text); } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> inline Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::fixed(const std::string& text) : Mat<eT>( arma_fixed_indicator(), fixed_n_rows, fixed_n_cols, 0, ((use_extra) ? mem_local_extra : mem_local) ) { arma_extra_debug_sigprint_this(this); Mat<eT>::operator=(text); } #if defined(ARMA_USE_CXX11) template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> inline Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::fixed(const std::initializer_list<eT>& list) : Mat<eT>( arma_fixed_indicator(), fixed_n_rows, fixed_n_cols, 0, ((use_extra) ? mem_local_extra : mem_local) ) { arma_extra_debug_sigprint_this(this); (*this).operator=(list); } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> inline const Mat<eT>& Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::operator=(const std::initializer_list<eT>& list) { arma_extra_debug_sigprint(); const uword N = list.size(); arma_debug_check( (N > fixed_n_elem), "Mat::fixed: initialiser list is too long" ); eT* this_mem = (*this).memptr(); arrayops::copy( this_mem, list.begin(), N ); for(uword iq=N; iq < fixed_n_elem; ++iq) { this_mem[iq] = eT(0); } return *this; } #endif template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> arma_inline const Op< typename Mat<eT>::template fixed<fixed_n_rows, fixed_n_cols>::Mat_fixed_type, op_htrans > Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::t() const { return Op< typename Mat<eT>::template fixed<fixed_n_rows, fixed_n_cols>::Mat_fixed_type, op_htrans >(*this); } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> arma_inline const Op< typename Mat<eT>::template fixed<fixed_n_rows, fixed_n_cols>::Mat_fixed_type, op_htrans > Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::ht() const { return Op< typename Mat<eT>::template fixed<fixed_n_rows, fixed_n_cols>::Mat_fixed_type, op_htrans >(*this); } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> arma_inline const Op< typename Mat<eT>::template fixed<fixed_n_rows, fixed_n_cols>::Mat_fixed_type, op_strans > Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::st() const { return Op< typename Mat<eT>::template fixed<fixed_n_rows, fixed_n_cols>::Mat_fixed_type, op_strans >(*this); } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> arma_inline arma_warn_unused const eT& Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::at_alt(const uword ii) const { #if defined(ARMA_HAVE_ALIGNED_ATTRIBUTE) return (use_extra) ? mem_local_extra[ii] : mem_local[ii]; #else const eT* mem_aligned = (use_extra) ? mem_local_extra : mem_local; memory::mark_as_aligned(mem_aligned); return mem_aligned[ii]; #endif } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> arma_inline arma_warn_unused eT& Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::operator[] (const uword ii) { return (use_extra) ? mem_local_extra[ii] : mem_local[ii]; } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> arma_inline arma_warn_unused const eT& Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::operator[] (const uword ii) const { return (use_extra) ? mem_local_extra[ii] : mem_local[ii]; } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> arma_inline arma_warn_unused eT& Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::at(const uword ii) { return (use_extra) ? mem_local_extra[ii] : mem_local[ii]; } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> arma_inline arma_warn_unused const eT& Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::at(const uword ii) const { return (use_extra) ? mem_local_extra[ii] : mem_local[ii]; } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> arma_inline arma_warn_unused eT& Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::operator() (const uword ii) { arma_debug_check( (ii >= fixed_n_elem), "Mat::operator(): index out of bounds"); return (use_extra) ? mem_local_extra[ii] : mem_local[ii]; } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> arma_inline arma_warn_unused const eT& Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::operator() (const uword ii) const { arma_debug_check( (ii >= fixed_n_elem), "Mat::operator(): index out of bounds"); return (use_extra) ? mem_local_extra[ii] : mem_local[ii]; } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> arma_inline arma_warn_unused eT& Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::at(const uword in_row, const uword in_col) { const uword iq = in_row + in_col*fixed_n_rows; return (use_extra) ? mem_local_extra[iq] : mem_local[iq]; } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> arma_inline arma_warn_unused const eT& Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::at(const uword in_row, const uword in_col) const { const uword iq = in_row + in_col*fixed_n_rows; return (use_extra) ? mem_local_extra[iq] : mem_local[iq]; } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> arma_inline arma_warn_unused eT& Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::operator() (const uword in_row, const uword in_col) { arma_debug_check( ((in_row >= fixed_n_rows) || (in_col >= fixed_n_cols)), "Mat::operator(): index out of bounds"); const uword iq = in_row + in_col*fixed_n_rows; return (use_extra) ? mem_local_extra[iq] : mem_local[iq]; } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> arma_inline arma_warn_unused const eT& Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::operator() (const uword in_row, const uword in_col) const { arma_debug_check( ((in_row >= fixed_n_rows) || (in_col >= fixed_n_cols)), "Mat::operator(): index out of bounds"); const uword iq = in_row + in_col*fixed_n_rows; return (use_extra) ? mem_local_extra[iq] : mem_local[iq]; } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> arma_inline arma_warn_unused eT* Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::colptr(const uword in_col) { eT* mem_actual = (use_extra) ? mem_local_extra : mem_local; return & access::rw(mem_actual[in_col*fixed_n_rows]); } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> arma_inline arma_warn_unused const eT* Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::colptr(const uword in_col) const { const eT* mem_actual = (use_extra) ? mem_local_extra : mem_local; return & mem_actual[in_col*fixed_n_rows]; } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> arma_inline arma_warn_unused eT* Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::memptr() { return (use_extra) ? mem_local_extra : mem_local; } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> arma_inline arma_warn_unused const eT* Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::memptr() const { return (use_extra) ? mem_local_extra : mem_local; } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> arma_inline arma_warn_unused bool Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::is_vec() const { return ( (fixed_n_rows == 1) || (fixed_n_cols == 1) ); } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> arma_hot inline const Mat<eT>& Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::fill(const eT val) { arma_extra_debug_sigprint(); eT* mem_use = (use_extra) ? &(mem_local_extra[0]) : &(mem_local[0]); arrayops::inplace_set_fixed<eT,fixed_n_elem>( mem_use, val ); return *this; } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> arma_hot inline const Mat<eT>& Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::zeros() { arma_extra_debug_sigprint(); eT* mem_use = (use_extra) ? &(mem_local_extra[0]) : &(mem_local[0]); arrayops::inplace_set_fixed<eT,fixed_n_elem>( mem_use, eT(0) ); return *this; } template<typename eT> template<uword fixed_n_rows, uword fixed_n_cols> arma_hot inline const Mat<eT>& Mat<eT>::fixed<fixed_n_rows, fixed_n_cols>::ones() { arma_extra_debug_sigprint(); eT* mem_use = (use_extra) ? &(mem_local_extra[0]) : &(mem_local[0]); arrayops::inplace_set_fixed<eT,fixed_n_elem>( mem_use, eT(1) ); return *this; } //! prefix ++ template<typename eT> arma_inline void Mat_aux::prefix_pp(Mat<eT>& x) { eT* memptr = x.memptr(); const uword n_elem = x.n_elem; uword i,j; for(i=0, j=1; j<n_elem; i+=2, j+=2) { ++(memptr[i]); ++(memptr[j]); } if(i < n_elem) { ++(memptr[i]); } } //! prefix ++ for complex numbers (work around for limitations of the std::complex class) template<typename T> arma_inline void Mat_aux::prefix_pp(Mat< std::complex<T> >& x) { x += T(1); } //! postfix ++ template<typename eT> arma_inline void Mat_aux::postfix_pp(Mat<eT>& x) { eT* memptr = x.memptr(); const uword n_elem = x.n_elem; uword i,j; for(i=0, j=1; j<n_elem; i+=2, j+=2) { (memptr[i])++; (memptr[j])++; } if(i < n_elem) { (memptr[i])++; } } //! postfix ++ for complex numbers (work around for limitations of the std::complex class) template<typename T> arma_inline void Mat_aux::postfix_pp(Mat< std::complex<T> >& x) { x += T(1); } //! prefix -- template<typename eT> arma_inline void Mat_aux::prefix_mm(Mat<eT>& x) { eT* memptr = x.memptr(); const uword n_elem = x.n_elem; uword i,j; for(i=0, j=1; j<n_elem; i+=2, j+=2) { --(memptr[i]); --(memptr[j]); } if(i < n_elem) { --(memptr[i]); } } //! prefix -- for complex numbers (work around for limitations of the std::complex class) template<typename T> arma_inline void Mat_aux::prefix_mm(Mat< std::complex<T> >& x) { x -= T(1); } //! postfix -- template<typename eT> arma_inline void Mat_aux::postfix_mm(Mat<eT>& x) { eT* memptr = x.memptr(); const uword n_elem = x.n_elem; uword i,j; for(i=0, j=1; j<n_elem; i+=2, j+=2) { (memptr[i])--; (memptr[j])--; } if(i < n_elem) { (memptr[i])--; } } //! postfix ++ for complex numbers (work around for limitations of the std::complex class) template<typename T> arma_inline void Mat_aux::postfix_mm(Mat< std::complex<T> >& x) { x -= T(1); } template<typename eT, typename T1> inline void Mat_aux::set_real(Mat<eT>& out, const Base<eT,T1>& X) { arma_extra_debug_sigprint(); const unwrap<T1> tmp(X.get_ref()); const Mat<eT>& A = tmp.M; arma_debug_assert_same_size( out, A, "Mat::set_real()" ); out = A; } template<typename eT, typename T1> inline void Mat_aux::set_imag(Mat<eT>&, const Base<eT,T1>&) { arma_extra_debug_sigprint(); } template<typename T, typename T1> inline void Mat_aux::set_real(Mat< std::complex<T> >& out, const Base<T,T1>& X) { arma_extra_debug_sigprint(); typedef typename std::complex<T> eT; const Proxy<T1> P(X.get_ref()); const uword local_n_rows = P.get_n_rows(); const uword local_n_cols = P.get_n_cols(); arma_debug_assert_same_size( out.n_rows, out.n_cols, local_n_rows, local_n_cols, "Mat::set_real()" ); eT* out_mem = out.memptr(); if(Proxy<T1>::prefer_at_accessor == false) { typedef typename Proxy<T1>::ea_type ea_type; ea_type A = P.get_ea(); const uword N = out.n_elem; for(uword i=0; i<N; ++i) { out_mem[i] = std::complex<T>( A[i], out_mem[i].imag() ); } } else { for(uword col=0; col < local_n_cols; ++col) for(uword row=0; row < local_n_rows; ++row) { (*out_mem) = std::complex<T>( P.at(row,col), (*out_mem).imag() ); out_mem++; } } } template<typename T, typename T1> inline void Mat_aux::set_imag(Mat< std::complex<T> >& out, const Base<T,T1>& X) { arma_extra_debug_sigprint(); typedef typename std::complex<T> eT; const Proxy<T1> P(X.get_ref()); const uword local_n_rows = P.get_n_rows(); const uword local_n_cols = P.get_n_cols(); arma_debug_assert_same_size( out.n_rows, out.n_cols, local_n_rows, local_n_cols, "Mat::set_imag()" ); eT* out_mem = out.memptr(); if(Proxy<T1>::prefer_at_accessor == false) { typedef typename Proxy<T1>::ea_type ea_type; ea_type A = P.get_ea(); const uword N = out.n_elem; for(uword i=0; i<N; ++i) { out_mem[i] = std::complex<T>( out_mem[i].real(), A[i] ); } } else { for(uword col=0; col < local_n_cols; ++col) for(uword row=0; row < local_n_rows; ++row) { (*out_mem) = std::complex<T>( (*out_mem).real(), P.at(row,col) ); out_mem++; } } } #ifdef ARMA_EXTRA_MAT_MEAT #include ARMA_INCFILE_WRAP(ARMA_EXTRA_MAT_MEAT) #endif //! @}