Mercurial > hg > segmenter-vamp-plugin
view armadillo-2.4.4/include/armadillo_bits/op_median_meat.hpp @ 0:8b6102e2a9b0
Armadillo Library
author | maxzanoni76 <max.zanoni@eecs.qmul.ac.uk> |
---|---|
date | Wed, 11 Apr 2012 09:27:06 +0100 |
parents | |
children |
line wrap: on
line source
// Copyright (C) 2009-2011 NICTA (www.nicta.com.au) // Copyright (C) 2009-2011 Conrad Sanderson // // This file is part of the Armadillo C++ library. // It is provided without any warranty of fitness // for any purpose. You can redistribute this file // and/or modify it under the terms of the GNU // Lesser General Public License (LGPL) as published // by the Free Software Foundation, either version 3 // of the License or (at your option) any later version. // (see http://www.opensource.org/licenses for more info) //! \addtogroup op_median //! @{ template<typename eT> arma_inline eT op_median::robust_mean(const eT A, const eT B) { return A + (B - A)/eT(2); } //! find the median value of a std::vector (contents is modified) template<typename eT> inline eT op_median::direct_median(std::vector<eT>& X) { arma_extra_debug_sigprint(); const uword n_elem = X.size(); const uword half = n_elem/2; std::sort(X.begin(), X.end()); if((n_elem % 2) == 0) { return op_median::robust_mean(X[half-1], X[half]); } else { return X[half]; } } template<typename eT> inline eT op_median::direct_median(const eT* X, const uword n_elem) { arma_extra_debug_sigprint(); std::vector<eT> tmp(X, X+n_elem); return op_median::direct_median(tmp); } template<typename eT> inline eT op_median::direct_median(const subview<eT>& X) { arma_extra_debug_sigprint(); const uword X_n_elem = X.n_elem; std::vector<eT> tmp(X_n_elem); for(uword i=0; i<X_n_elem; ++i) { tmp[i] = X[i]; } return op_median::direct_median(tmp); } template<typename eT> inline eT op_median::direct_median(const diagview<eT>& X) { arma_extra_debug_sigprint(); const uword X_n_elem = X.n_elem; std::vector<eT> tmp(X_n_elem); for(uword i=0; i<X_n_elem; ++i) { tmp[i] = X[i]; } return op_median::direct_median(tmp); } //! \brief //! For each row or for each column, find the median value. //! The result is stored in a dense matrix that has either one column or one row. //! The dimension, for which the medians are found, is set via the median() function. template<typename T1> inline void op_median::apply(Mat<typename T1::elem_type>& out, const Op<T1,op_median>& in) { arma_extra_debug_sigprint(); typedef typename T1::elem_type eT; const unwrap_check<T1> tmp(in.m, out); const Mat<eT>& X = tmp.M; const uword X_n_rows = X.n_rows; const uword X_n_cols = X.n_cols; const uword dim = in.aux_uword_a; arma_debug_check( (dim > 1), "median(): incorrect usage. dim must be 0 or 1"); if(dim == 0) // in each column { arma_extra_debug_print("op_median::apply(), dim = 0"); arma_debug_check( (X_n_rows == 0), "median(): given object has zero rows" ); out.set_size(1, X_n_cols); std::vector<eT> tmp_vec(X_n_rows); for(uword col=0; col<X_n_cols; ++col) { const eT* colmem = X.colptr(col); for(uword row=0; row<X_n_rows; ++row) { tmp_vec[row] = colmem[row]; } out[col] = op_median::direct_median(tmp_vec); } } else if(dim == 1) // in each row { arma_extra_debug_print("op_median::apply(), dim = 1"); arma_debug_check( (X_n_cols == 0), "median(): given object has zero columns" ); out.set_size(X_n_rows, 1); std::vector<eT> tmp_vec(X_n_cols); for(uword row=0; row<X_n_rows; ++row) { for(uword col=0; col<X_n_cols; ++col) { tmp_vec[col] = X.at(row,col); } out[row] = op_median::direct_median(tmp_vec); } } } template<typename T> arma_inline std::complex<T> op_median::robust_mean(const std::complex<T>& A, const std::complex<T>& B) { return A + (B - A)/T(2); } template<typename T> inline void op_median::direct_cx_median_index ( uword& out_index1, uword& out_index2, std::vector< arma_cx_median_packet<T> >& X ) { arma_extra_debug_sigprint(); const uword n_elem = X.size(); const uword half = n_elem/2; std::sort(X.begin(), X.end()); if((n_elem % 2) == 0) { out_index1 = X[half-1].index; out_index2 = X[half ].index; } else { out_index1 = X[half].index; out_index2 = out_index1; } } template<typename T> inline void op_median::direct_cx_median_index ( uword& out_index1, uword& out_index2, const std::complex<T>* X, const uword n_elem ) { arma_extra_debug_sigprint(); std::vector< arma_cx_median_packet<T> > tmp(n_elem); for(uword i=0; i<n_elem; ++i) { tmp[i].val = std::abs(X[i]); tmp[i].index = i; } op_median::direct_cx_median_index(out_index1, out_index2, tmp); } template<typename T> inline void op_median::direct_cx_median_index ( uword& out_index1, uword& out_index2, const subview< std::complex<T> >&X ) { arma_extra_debug_sigprint(); const uword n_elem = X.n_elem; std::vector< arma_cx_median_packet<T> > tmp(n_elem); for(uword i=0; i<n_elem; ++i) { tmp[i].val = std::abs(X[i]); tmp[i].index = i; } op_median::direct_cx_median_index(out_index1, out_index2, tmp); } template<typename T> inline void op_median::direct_cx_median_index ( uword& out_index1, uword& out_index2, const diagview< std::complex<T> >&X ) { arma_extra_debug_sigprint(); const uword n_elem = X.n_elem; std::vector< arma_cx_median_packet<T> > tmp(n_elem); for(uword i=0; i<n_elem; ++i) { tmp[i].val = std::abs(X[i]); tmp[i].index = i; } op_median::direct_cx_median_index(out_index1, out_index2, tmp); } //! Implementation for complex numbers template<typename T, typename T1> inline void op_median::apply(Mat< std::complex<T> >& out, const Op<T1,op_median>& in) { arma_extra_debug_sigprint(); typedef typename std::complex<T> eT; arma_type_check(( is_same_type<eT, typename T1::elem_type>::value == false )); const unwrap_check<T1> tmp(in.m, out); const Mat<eT>& X = tmp.M; const uword X_n_rows = X.n_rows; const uword X_n_cols = X.n_cols; const uword dim = in.aux_uword_a; arma_debug_check( (dim > 1), "median(): incorrect usage. dim must be 0 or 1"); if(dim == 0) // in each column { arma_extra_debug_print("op_median::apply(), dim = 0"); arma_debug_check( (X_n_rows == 0), "median(): given object has zero rows" ); out.set_size(1, X_n_cols); std::vector< arma_cx_median_packet<T> > tmp_vec(X_n_rows); for(uword col=0; col<X_n_cols; ++col) { const eT* colmem = X.colptr(col); for(uword row=0; row<X_n_rows; ++row) { tmp_vec[row].val = std::abs(colmem[row]); tmp_vec[row].index = row; } uword index1; uword index2; op_median::direct_cx_median_index(index1, index2, tmp_vec); out[col] = op_median::robust_mean(colmem[index1], colmem[index2]); } } else if(dim == 1) // in each row { arma_extra_debug_print("op_median::apply(), dim = 1"); arma_debug_check( (X_n_cols == 0), "median(): given object has zero columns" ); out.set_size(X_n_rows, 1); std::vector< arma_cx_median_packet<T> > tmp_vec(X_n_cols); for(uword row=0; row<X_n_rows; ++row) { for(uword col=0; col<X_n_cols; ++col) { tmp_vec[col].val = std::abs(X.at(row,col)); tmp_vec[row].index = col; } uword index1; uword index2; op_median::direct_cx_median_index(index1, index2, tmp_vec); out[row] = op_median::robust_mean( X.at(row,index1), X.at(row,index2) ); } } } //! @}