Mercurial > hg > segmenter-vamp-plugin
diff armadillo-2.4.4/include/armadillo_bits/op_median_meat.hpp @ 0:8b6102e2a9b0
Armadillo Library
author | maxzanoni76 <max.zanoni@eecs.qmul.ac.uk> |
---|---|
date | Wed, 11 Apr 2012 09:27:06 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/armadillo-2.4.4/include/armadillo_bits/op_median_meat.hpp Wed Apr 11 09:27:06 2012 +0100 @@ -0,0 +1,379 @@ +// Copyright (C) 2009-2011 NICTA (www.nicta.com.au) +// Copyright (C) 2009-2011 Conrad Sanderson +// +// This file is part of the Armadillo C++ library. +// It is provided without any warranty of fitness +// for any purpose. You can redistribute this file +// and/or modify it under the terms of the GNU +// Lesser General Public License (LGPL) as published +// by the Free Software Foundation, either version 3 +// of the License or (at your option) any later version. +// (see http://www.opensource.org/licenses for more info) + + +//! \addtogroup op_median +//! @{ + + + +template<typename eT> +arma_inline +eT +op_median::robust_mean(const eT A, const eT B) + { + return A + (B - A)/eT(2); + } + + + +//! find the median value of a std::vector (contents is modified) +template<typename eT> +inline +eT +op_median::direct_median(std::vector<eT>& X) + { + arma_extra_debug_sigprint(); + + const uword n_elem = X.size(); + const uword half = n_elem/2; + + std::sort(X.begin(), X.end()); + + if((n_elem % 2) == 0) + { + return op_median::robust_mean(X[half-1], X[half]); + } + else + { + return X[half]; + } + } + + + +template<typename eT> +inline +eT +op_median::direct_median(const eT* X, const uword n_elem) + { + arma_extra_debug_sigprint(); + + std::vector<eT> tmp(X, X+n_elem); + + return op_median::direct_median(tmp); + } + + + +template<typename eT> +inline +eT +op_median::direct_median(const subview<eT>& X) + { + arma_extra_debug_sigprint(); + + const uword X_n_elem = X.n_elem; + + std::vector<eT> tmp(X_n_elem); + + for(uword i=0; i<X_n_elem; ++i) + { + tmp[i] = X[i]; + } + + return op_median::direct_median(tmp); + } + + + +template<typename eT> +inline +eT +op_median::direct_median(const diagview<eT>& X) + { + arma_extra_debug_sigprint(); + + const uword X_n_elem = X.n_elem; + + std::vector<eT> tmp(X_n_elem); + + for(uword i=0; i<X_n_elem; ++i) + { + tmp[i] = X[i]; + } + + return op_median::direct_median(tmp); + } + + + +//! \brief +//! For each row or for each column, find the median value. +//! The result is stored in a dense matrix that has either one column or one row. +//! The dimension, for which the medians are found, is set via the median() function. +template<typename T1> +inline +void +op_median::apply(Mat<typename T1::elem_type>& out, const Op<T1,op_median>& in) + { + arma_extra_debug_sigprint(); + + typedef typename T1::elem_type eT; + + const unwrap_check<T1> tmp(in.m, out); + const Mat<eT>& X = tmp.M; + + const uword X_n_rows = X.n_rows; + const uword X_n_cols = X.n_cols; + + const uword dim = in.aux_uword_a; + arma_debug_check( (dim > 1), "median(): incorrect usage. dim must be 0 or 1"); + + if(dim == 0) // in each column + { + arma_extra_debug_print("op_median::apply(), dim = 0"); + + arma_debug_check( (X_n_rows == 0), "median(): given object has zero rows" ); + + out.set_size(1, X_n_cols); + + std::vector<eT> tmp_vec(X_n_rows); + + for(uword col=0; col<X_n_cols; ++col) + { + const eT* colmem = X.colptr(col); + + for(uword row=0; row<X_n_rows; ++row) + { + tmp_vec[row] = colmem[row]; + } + + out[col] = op_median::direct_median(tmp_vec); + } + } + else + if(dim == 1) // in each row + { + arma_extra_debug_print("op_median::apply(), dim = 1"); + + arma_debug_check( (X_n_cols == 0), "median(): given object has zero columns" ); + + out.set_size(X_n_rows, 1); + + std::vector<eT> tmp_vec(X_n_cols); + + for(uword row=0; row<X_n_rows; ++row) + { + for(uword col=0; col<X_n_cols; ++col) + { + tmp_vec[col] = X.at(row,col); + } + + out[row] = op_median::direct_median(tmp_vec); + } + } + } + + + +template<typename T> +arma_inline +std::complex<T> +op_median::robust_mean(const std::complex<T>& A, const std::complex<T>& B) + { + return A + (B - A)/T(2); + } + + + +template<typename T> +inline +void +op_median::direct_cx_median_index + ( + uword& out_index1, + uword& out_index2, + std::vector< arma_cx_median_packet<T> >& X + ) + { + arma_extra_debug_sigprint(); + + const uword n_elem = X.size(); + const uword half = n_elem/2; + + std::sort(X.begin(), X.end()); + + if((n_elem % 2) == 0) + { + out_index1 = X[half-1].index; + out_index2 = X[half ].index; + } + else + { + out_index1 = X[half].index; + out_index2 = out_index1; + } + } + + + +template<typename T> +inline +void +op_median::direct_cx_median_index + ( + uword& out_index1, + uword& out_index2, + const std::complex<T>* X, + const uword n_elem + ) + { + arma_extra_debug_sigprint(); + + std::vector< arma_cx_median_packet<T> > tmp(n_elem); + + for(uword i=0; i<n_elem; ++i) + { + tmp[i].val = std::abs(X[i]); + tmp[i].index = i; + } + + op_median::direct_cx_median_index(out_index1, out_index2, tmp); + } + + + +template<typename T> +inline +void +op_median::direct_cx_median_index + ( + uword& out_index1, + uword& out_index2, + const subview< std::complex<T> >&X + ) + { + arma_extra_debug_sigprint(); + + const uword n_elem = X.n_elem; + + std::vector< arma_cx_median_packet<T> > tmp(n_elem); + + for(uword i=0; i<n_elem; ++i) + { + tmp[i].val = std::abs(X[i]); + tmp[i].index = i; + } + + op_median::direct_cx_median_index(out_index1, out_index2, tmp); + } + + + +template<typename T> +inline +void +op_median::direct_cx_median_index + ( + uword& out_index1, + uword& out_index2, + const diagview< std::complex<T> >&X + ) + { + arma_extra_debug_sigprint(); + + const uword n_elem = X.n_elem; + + std::vector< arma_cx_median_packet<T> > tmp(n_elem); + + for(uword i=0; i<n_elem; ++i) + { + tmp[i].val = std::abs(X[i]); + tmp[i].index = i; + } + + op_median::direct_cx_median_index(out_index1, out_index2, tmp); + } + + + +//! Implementation for complex numbers +template<typename T, typename T1> +inline +void +op_median::apply(Mat< std::complex<T> >& out, const Op<T1,op_median>& in) + { + arma_extra_debug_sigprint(); + + typedef typename std::complex<T> eT; + + arma_type_check(( is_same_type<eT, typename T1::elem_type>::value == false )); + + const unwrap_check<T1> tmp(in.m, out); + const Mat<eT>& X = tmp.M; + + const uword X_n_rows = X.n_rows; + const uword X_n_cols = X.n_cols; + + const uword dim = in.aux_uword_a; + arma_debug_check( (dim > 1), "median(): incorrect usage. dim must be 0 or 1"); + + if(dim == 0) // in each column + { + arma_extra_debug_print("op_median::apply(), dim = 0"); + + arma_debug_check( (X_n_rows == 0), "median(): given object has zero rows" ); + + out.set_size(1, X_n_cols); + + std::vector< arma_cx_median_packet<T> > tmp_vec(X_n_rows); + + for(uword col=0; col<X_n_cols; ++col) + { + const eT* colmem = X.colptr(col); + + for(uword row=0; row<X_n_rows; ++row) + { + tmp_vec[row].val = std::abs(colmem[row]); + tmp_vec[row].index = row; + } + + uword index1; + uword index2; + op_median::direct_cx_median_index(index1, index2, tmp_vec); + + out[col] = op_median::robust_mean(colmem[index1], colmem[index2]); + } + } + else + if(dim == 1) // in each row + { + arma_extra_debug_print("op_median::apply(), dim = 1"); + + arma_debug_check( (X_n_cols == 0), "median(): given object has zero columns" ); + + out.set_size(X_n_rows, 1); + + std::vector< arma_cx_median_packet<T> > tmp_vec(X_n_cols); + + for(uword row=0; row<X_n_rows; ++row) + { + for(uword col=0; col<X_n_cols; ++col) + { + tmp_vec[col].val = std::abs(X.at(row,col)); + tmp_vec[row].index = col; + } + + uword index1; + uword index2; + op_median::direct_cx_median_index(index1, index2, tmp_vec); + + out[row] = op_median::robust_mean( X.at(row,index1), X.at(row,index2) ); + } + } + } + + + +//! @} +