Mercurial > hg > segmenter-vamp-plugin
view armadillo-2.4.4/include/armadillo_bits/op_mean_meat.hpp @ 0:8b6102e2a9b0
Armadillo Library
author | maxzanoni76 <max.zanoni@eecs.qmul.ac.uk> |
---|---|
date | Wed, 11 Apr 2012 09:27:06 +0100 |
parents | |
children |
line wrap: on
line source
// Copyright (C) 2009-2011 NICTA (www.nicta.com.au) // Copyright (C) 2009-2011 Conrad Sanderson // // This file is part of the Armadillo C++ library. // It is provided without any warranty of fitness // for any purpose. You can redistribute this file // and/or modify it under the terms of the GNU // Lesser General Public License (LGPL) as published // by the Free Software Foundation, either version 3 // of the License or (at your option) any later version. // (see http://www.opensource.org/licenses for more info) //! \addtogroup op_mean //! @{ template<typename eT> arma_pure inline eT op_mean::direct_mean(const eT* const X, const uword n_elem) { arma_extra_debug_sigprint(); typedef typename get_pod_type<eT>::result T; const eT result = arrayops::accumulate(X, n_elem) / T(n_elem); return arma_isfinite(result) ? result : op_mean::direct_mean_robust(X, n_elem); } template<typename eT> inline eT op_mean::direct_mean(const Mat<eT>& X, const uword row) { arma_extra_debug_sigprint(); typedef typename get_pod_type<eT>::result T; const uword X_n_cols = X.n_cols; eT val = eT(0); for(uword col=0; col<X_n_cols; ++col) { val += X.at(row,col); } const eT result = val / T(X_n_cols); return arma_isfinite(result) ? result : direct_mean_robust(X, row); } template<typename eT> inline eT op_mean::direct_mean(const subview<eT>& X) { arma_extra_debug_sigprint(); typedef typename get_pod_type<eT>::result T; const uword X_n_elem = X.n_elem; eT val = eT(0); for(uword i=0; i<X_n_elem; ++i) { val += X[i]; } const eT result = val / T(X_n_elem); return arma_isfinite(result) ? result : direct_mean_robust(X); } template<typename eT> inline eT op_mean::direct_mean(const diagview<eT>& X) { arma_extra_debug_sigprint(); typedef typename get_pod_type<eT>::result T; const uword X_n_elem = X.n_elem; eT val = eT(0); for(uword i=0; i<X_n_elem; ++i) { val += X[i]; } const eT result = val / T(X_n_elem); return arma_isfinite(result) ? result : direct_mean_robust(X); } //! \brief //! For each row or for each column, find the mean value. //! The result is stored in a dense matrix that has either one column or one row. //! The dimension, for which the means are found, is set via the mean() function. template<typename T1> inline void op_mean::apply(Mat<typename T1::elem_type>& out, const Op<T1,op_mean>& in) { arma_extra_debug_sigprint(); typedef typename T1::elem_type eT; typedef typename get_pod_type<eT>::result T; const unwrap_check<T1> tmp(in.m, out); const Mat<eT>& X = tmp.M; const uword dim = in.aux_uword_a; arma_debug_check( (dim > 1), "mean(): incorrect usage. dim must be 0 or 1"); const uword X_n_rows = X.n_rows; const uword X_n_cols = X.n_cols; if(dim == 0) { arma_extra_debug_print("op_mean::apply(), dim = 0"); out.set_size( (X_n_rows > 0) ? 1 : 0, X_n_cols ); if(X_n_rows > 0) { eT* out_mem = out.memptr(); for(uword col=0; col<X_n_cols; ++col) { out_mem[col] = op_mean::direct_mean( X.colptr(col), X_n_rows ); } } } else if(dim == 1) { arma_extra_debug_print("op_mean::apply(), dim = 1"); out.set_size(X_n_rows, (X_n_cols > 0) ? 1 : 0); if(X_n_cols > 0) { eT* out_mem = out.memptr(); for(uword row=0; row<X_n_rows; ++row) { out_mem[row] = op_mean::direct_mean( X, row ); } } } } template<typename eT> arma_pure inline eT op_mean::direct_mean_robust(const eT* const X, const uword n_elem) { arma_extra_debug_sigprint(); // use an adapted form of the mean finding algorithm from the running_stat class typedef typename get_pod_type<eT>::result T; uword i,j; eT r_mean = eT(0); for(i=0, j=1; j<n_elem; i+=2, j+=2) { const eT Xi = X[i]; const eT Xj = X[j]; r_mean = r_mean + (Xi - r_mean)/T(j); // we need i+1, and j is equivalent to i+1 here r_mean = r_mean + (Xj - r_mean)/T(j+1); } if(i < n_elem) { const eT Xi = X[i]; r_mean = r_mean + (Xi - r_mean)/T(i+1); } return r_mean; } template<typename eT> inline eT op_mean::direct_mean_robust(const Mat<eT>& X, const uword row) { arma_extra_debug_sigprint(); typedef typename get_pod_type<eT>::result T; const uword X_n_cols = X.n_cols; eT r_mean = eT(0); for(uword col=0; col<X_n_cols; ++col) { r_mean = r_mean + (X.at(row,col) - r_mean)/T(col+1); } return r_mean; } template<typename eT> inline eT op_mean::direct_mean_robust(const subview<eT>& X) { arma_extra_debug_sigprint(); typedef typename get_pod_type<eT>::result T; const uword X_n_elem = X.n_elem; eT r_mean = eT(0); for(uword i=0; i<X_n_elem; ++i) { r_mean = r_mean + (X[i] - r_mean)/T(i+1); } return r_mean; } template<typename eT> inline eT op_mean::direct_mean_robust(const diagview<eT>& X) { arma_extra_debug_sigprint(); typedef typename get_pod_type<eT>::result T; const uword X_n_elem = X.n_elem; eT r_mean = eT(0); for(uword i=0; i<X_n_elem; ++i) { r_mean = r_mean + (X[i] - r_mean)/T(i+1); } return r_mean; } //! @}