Mercurial > hg > segmenter-vamp-plugin
diff armadillo-2.4.4/include/armadillo_bits/op_mean_meat.hpp @ 0:8b6102e2a9b0
Armadillo Library
author | maxzanoni76 <max.zanoni@eecs.qmul.ac.uk> |
---|---|
date | Wed, 11 Apr 2012 09:27:06 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/armadillo-2.4.4/include/armadillo_bits/op_mean_meat.hpp Wed Apr 11 09:27:06 2012 +0100 @@ -0,0 +1,279 @@ +// Copyright (C) 2009-2011 NICTA (www.nicta.com.au) +// Copyright (C) 2009-2011 Conrad Sanderson +// +// This file is part of the Armadillo C++ library. +// It is provided without any warranty of fitness +// for any purpose. You can redistribute this file +// and/or modify it under the terms of the GNU +// Lesser General Public License (LGPL) as published +// by the Free Software Foundation, either version 3 +// of the License or (at your option) any later version. +// (see http://www.opensource.org/licenses for more info) + + +//! \addtogroup op_mean +//! @{ + + + +template<typename eT> +arma_pure +inline +eT +op_mean::direct_mean(const eT* const X, const uword n_elem) + { + arma_extra_debug_sigprint(); + + typedef typename get_pod_type<eT>::result T; + + const eT result = arrayops::accumulate(X, n_elem) / T(n_elem); + + return arma_isfinite(result) ? result : op_mean::direct_mean_robust(X, n_elem); + } + + + +template<typename eT> +inline +eT +op_mean::direct_mean(const Mat<eT>& X, const uword row) + { + arma_extra_debug_sigprint(); + + typedef typename get_pod_type<eT>::result T; + + const uword X_n_cols = X.n_cols; + + eT val = eT(0); + + for(uword col=0; col<X_n_cols; ++col) + { + val += X.at(row,col); + } + + const eT result = val / T(X_n_cols); + + return arma_isfinite(result) ? result : direct_mean_robust(X, row); + } + + + +template<typename eT> +inline +eT +op_mean::direct_mean(const subview<eT>& X) + { + arma_extra_debug_sigprint(); + + typedef typename get_pod_type<eT>::result T; + + const uword X_n_elem = X.n_elem; + + eT val = eT(0); + + for(uword i=0; i<X_n_elem; ++i) + { + val += X[i]; + } + + const eT result = val / T(X_n_elem); + + return arma_isfinite(result) ? result : direct_mean_robust(X); + } + + + +template<typename eT> +inline +eT +op_mean::direct_mean(const diagview<eT>& X) + { + arma_extra_debug_sigprint(); + + typedef typename get_pod_type<eT>::result T; + + const uword X_n_elem = X.n_elem; + + eT val = eT(0); + + for(uword i=0; i<X_n_elem; ++i) + { + val += X[i]; + } + + const eT result = val / T(X_n_elem); + + return arma_isfinite(result) ? result : direct_mean_robust(X); + } + + + +//! \brief +//! For each row or for each column, find the mean value. +//! The result is stored in a dense matrix that has either one column or one row. +//! The dimension, for which the means are found, is set via the mean() function. +template<typename T1> +inline +void +op_mean::apply(Mat<typename T1::elem_type>& out, const Op<T1,op_mean>& in) + { + arma_extra_debug_sigprint(); + + typedef typename T1::elem_type eT; + typedef typename get_pod_type<eT>::result T; + + const unwrap_check<T1> tmp(in.m, out); + const Mat<eT>& X = tmp.M; + + const uword dim = in.aux_uword_a; + arma_debug_check( (dim > 1), "mean(): incorrect usage. dim must be 0 or 1"); + + const uword X_n_rows = X.n_rows; + const uword X_n_cols = X.n_cols; + + if(dim == 0) + { + arma_extra_debug_print("op_mean::apply(), dim = 0"); + + out.set_size( (X_n_rows > 0) ? 1 : 0, X_n_cols ); + + if(X_n_rows > 0) + { + eT* out_mem = out.memptr(); + + for(uword col=0; col<X_n_cols; ++col) + { + out_mem[col] = op_mean::direct_mean( X.colptr(col), X_n_rows ); + } + } + } + else + if(dim == 1) + { + arma_extra_debug_print("op_mean::apply(), dim = 1"); + + out.set_size(X_n_rows, (X_n_cols > 0) ? 1 : 0); + + if(X_n_cols > 0) + { + eT* out_mem = out.memptr(); + + for(uword row=0; row<X_n_rows; ++row) + { + out_mem[row] = op_mean::direct_mean( X, row ); + } + } + } + } + + + +template<typename eT> +arma_pure +inline +eT +op_mean::direct_mean_robust(const eT* const X, const uword n_elem) + { + arma_extra_debug_sigprint(); + + // use an adapted form of the mean finding algorithm from the running_stat class + + typedef typename get_pod_type<eT>::result T; + + uword i,j; + + eT r_mean = eT(0); + + for(i=0, j=1; j<n_elem; i+=2, j+=2) + { + const eT Xi = X[i]; + const eT Xj = X[j]; + + r_mean = r_mean + (Xi - r_mean)/T(j); // we need i+1, and j is equivalent to i+1 here + r_mean = r_mean + (Xj - r_mean)/T(j+1); + } + + + if(i < n_elem) + { + const eT Xi = X[i]; + + r_mean = r_mean + (Xi - r_mean)/T(i+1); + } + + return r_mean; + } + + + +template<typename eT> +inline +eT +op_mean::direct_mean_robust(const Mat<eT>& X, const uword row) + { + arma_extra_debug_sigprint(); + + typedef typename get_pod_type<eT>::result T; + + const uword X_n_cols = X.n_cols; + + eT r_mean = eT(0); + + for(uword col=0; col<X_n_cols; ++col) + { + r_mean = r_mean + (X.at(row,col) - r_mean)/T(col+1); + } + + return r_mean; + } + + + +template<typename eT> +inline +eT +op_mean::direct_mean_robust(const subview<eT>& X) + { + arma_extra_debug_sigprint(); + + typedef typename get_pod_type<eT>::result T; + + const uword X_n_elem = X.n_elem; + + eT r_mean = eT(0); + + for(uword i=0; i<X_n_elem; ++i) + { + r_mean = r_mean + (X[i] - r_mean)/T(i+1); + } + + return r_mean; + } + + + +template<typename eT> +inline +eT +op_mean::direct_mean_robust(const diagview<eT>& X) + { + arma_extra_debug_sigprint(); + + typedef typename get_pod_type<eT>::result T; + + const uword X_n_elem = X.n_elem; + + eT r_mean = eT(0); + + for(uword i=0; i<X_n_elem; ++i) + { + r_mean = r_mean + (X[i] - r_mean)/T(i+1); + } + + return r_mean; + } + + + +//! @} +