Mercurial > hg > segmenter-vamp-plugin
diff armadillo-3.900.4/include/armadillo_bits/op_sum_meat.hpp @ 49:1ec0e2823891
Switch to using subrepo copies of qm-dsp, nnls-chroma, vamp-plugin-sdk; update Armadillo version; assume build without external BLAS/LAPACK
author | Chris Cannam |
---|---|
date | Thu, 13 Jun 2013 10:25:24 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/armadillo-3.900.4/include/armadillo_bits/op_sum_meat.hpp Thu Jun 13 10:25:24 2013 +0100 @@ -0,0 +1,141 @@ +// Copyright (C) 2008-2013 NICTA (www.nicta.com.au) +// Copyright (C) 2008-2013 Conrad Sanderson +// +// This Source Code Form is subject to the terms of the Mozilla Public +// License, v. 2.0. If a copy of the MPL was not distributed with this +// file, You can obtain one at http://mozilla.org/MPL/2.0/. + + +//! \addtogroup op_sum +//! @{ + +//! \brief +//! Immediate sum of elements of a matrix along a specified dimension (either rows or columns). +//! The result is stored in a dense matrix that has either one column or one row. +//! See the sum() function for more details. +template<typename T1> +arma_hot +inline +void +op_sum::apply(Mat<typename T1::elem_type>& out, const Op<T1,op_sum>& in) + { + arma_extra_debug_sigprint(); + + typedef typename T1::elem_type eT; + + const uword dim = in.aux_uword_a; + arma_debug_check( (dim > 1), "sum(): incorrect usage. dim must be 0 or 1"); + + const Proxy<T1> P(in.m); + + typedef typename Proxy<T1>::stored_type P_stored_type; + + const bool is_alias = P.is_alias(out); + + if( (is_Mat<P_stored_type>::value == true) || is_alias ) + { + const unwrap_check<P_stored_type> tmp(P.Q, is_alias); + + const typename unwrap_check<P_stored_type>::stored_type& X = tmp.M; + + const uword X_n_rows = X.n_rows; + const uword X_n_cols = X.n_cols; + + if(dim == 0) // traverse across rows (i.e. find the sum in each column) + { + out.set_size(1, X_n_cols); + + eT* out_mem = out.memptr(); + + for(uword col=0; col < X_n_cols; ++col) + { + out_mem[col] = arrayops::accumulate( X.colptr(col), X_n_rows ); + } + } + else // traverse across columns (i.e. find the sum in each row) + { + out.set_size(X_n_rows, 1); + + eT* out_mem = out.memptr(); + + for(uword row=0; row < X_n_rows; ++row) + { + eT val = eT(0); + + uword i,j; + for(i=0, j=1; j < X_n_cols; i+=2, j+=2) + { + val += X.at(row,i); + val += X.at(row,j); + } + + if(i < X_n_cols) + { + val += X.at(row,i); + } + + out_mem[row] = val; + } + } + } + else + { + const uword P_n_rows = P.get_n_rows(); + const uword P_n_cols = P.get_n_cols(); + + if(dim == 0) // traverse across rows (i.e. find the sum in each column) + { + out.set_size(1, P_n_cols); + + eT* out_mem = out.memptr(); + + for(uword col=0; col < P_n_cols; ++col) + { + eT val = eT(0); + + uword i,j; + for(i=0, j=1; j < P_n_rows; i+=2, j+=2) + { + val += P.at(i,col); + val += P.at(j,col); + } + + if(i < P_n_rows) + { + val += P.at(i,col); + } + + out_mem[col] = val; + } + } + else // traverse across columns (i.e. find the sum in each row) + { + out.set_size(P_n_rows, 1); + + eT* out_mem = out.memptr(); + + for(uword row=0; row < P_n_rows; ++row) + { + eT val = eT(0); + + uword i,j; + for(i=0, j=1; j < P_n_cols; i+=2, j+=2) + { + val += P.at(row,i); + val += P.at(row,j); + } + + if(i < P_n_cols) + { + val += P.at(row,i); + } + + out_mem[row] = val; + } + } + } + } + + + +//! @}