Mercurial > hg > segmenter-vamp-plugin
diff armadillo-3.900.4/include/armadillo_bits/op_mean_meat.hpp @ 49:1ec0e2823891
Switch to using subrepo copies of qm-dsp, nnls-chroma, vamp-plugin-sdk; update Armadillo version; assume build without external BLAS/LAPACK
author | Chris Cannam |
---|---|
date | Thu, 13 Jun 2013 10:25:24 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/armadillo-3.900.4/include/armadillo_bits/op_mean_meat.hpp Thu Jun 13 10:25:24 2013 +0100 @@ -0,0 +1,376 @@ +// Copyright (C) 2009-2012 NICTA (www.nicta.com.au) +// Copyright (C) 2009-2012 Conrad Sanderson +// +// This Source Code Form is subject to the terms of the Mozilla Public +// License, v. 2.0. If a copy of the MPL was not distributed with this +// file, You can obtain one at http://mozilla.org/MPL/2.0/. + + +//! \addtogroup op_mean +//! @{ + + + +//! \brief +//! For each row or for each column, find the mean value. +//! The result is stored in a dense matrix that has either one column or one row. +//! The dimension, for which the means are found, is set via the mean() function. +template<typename T1> +inline +void +op_mean::apply(Mat<typename T1::elem_type>& out, const Op<T1,op_mean>& in) + { + arma_extra_debug_sigprint(); + + typedef typename T1::elem_type eT; + + const unwrap_check<T1> tmp(in.m, out); + const Mat<eT>& X = tmp.M; + + const uword dim = in.aux_uword_a; + arma_debug_check( (dim > 1), "mean(): incorrect usage. dim must be 0 or 1"); + + const uword X_n_rows = X.n_rows; + const uword X_n_cols = X.n_cols; + + if(dim == 0) + { + arma_extra_debug_print("op_mean::apply(), dim = 0"); + + out.set_size( (X_n_rows > 0) ? 1 : 0, X_n_cols ); + + if(X_n_rows > 0) + { + eT* out_mem = out.memptr(); + + for(uword col=0; col < X_n_cols; ++col) + { + out_mem[col] = op_mean::direct_mean( X.colptr(col), X_n_rows ); + } + } + } + else + if(dim == 1) + { + arma_extra_debug_print("op_mean::apply(), dim = 1"); + + out.set_size(X_n_rows, (X_n_cols > 0) ? 1 : 0); + + if(X_n_cols > 0) + { + eT* out_mem = out.memptr(); + + for(uword row=0; row < X_n_rows; ++row) + { + out_mem[row] = op_mean::direct_mean( X, row ); + } + } + } + } + + + +template<typename eT> +arma_pure +inline +eT +op_mean::direct_mean(const eT* const X, const uword n_elem) + { + arma_extra_debug_sigprint(); + + typedef typename get_pod_type<eT>::result T; + + const eT result = arrayops::accumulate(X, n_elem) / T(n_elem); + + return arma_isfinite(result) ? result : op_mean::direct_mean_robust(X, n_elem); + } + + + +template<typename eT> +arma_pure +inline +eT +op_mean::direct_mean_robust(const eT* const X, const uword n_elem) + { + arma_extra_debug_sigprint(); + + // use an adapted form of the mean finding algorithm from the running_stat class + + typedef typename get_pod_type<eT>::result T; + + uword i,j; + + eT r_mean = eT(0); + + for(i=0, j=1; j<n_elem; i+=2, j+=2) + { + const eT Xi = X[i]; + const eT Xj = X[j]; + + r_mean = r_mean + (Xi - r_mean)/T(j); // we need i+1, and j is equivalent to i+1 here + r_mean = r_mean + (Xj - r_mean)/T(j+1); + } + + + if(i < n_elem) + { + const eT Xi = X[i]; + + r_mean = r_mean + (Xi - r_mean)/T(i+1); + } + + return r_mean; + } + + + +template<typename eT> +inline +eT +op_mean::direct_mean(const Mat<eT>& X, const uword row) + { + arma_extra_debug_sigprint(); + + typedef typename get_pod_type<eT>::result T; + + const uword X_n_cols = X.n_cols; + + eT val = eT(0); + + uword i,j; + for(i=0, j=1; j < X_n_cols; i+=2, j+=2) + { + val += X.at(row,i); + val += X.at(row,j); + } + + if(i < X_n_cols) + { + val += X.at(row,i); + } + + const eT result = val / T(X_n_cols); + + return arma_isfinite(result) ? result : op_mean::direct_mean_robust(X, row); + } + + + +template<typename eT> +inline +eT +op_mean::direct_mean_robust(const Mat<eT>& X, const uword row) + { + arma_extra_debug_sigprint(); + + typedef typename get_pod_type<eT>::result T; + + const uword X_n_cols = X.n_cols; + + eT r_mean = eT(0); + + for(uword col=0; col < X_n_cols; ++col) + { + r_mean = r_mean + (X.at(row,col) - r_mean)/T(col+1); + } + + return r_mean; + } + + + +template<typename eT> +inline +eT +op_mean::mean_all(const subview<eT>& X) + { + arma_extra_debug_sigprint(); + + typedef typename get_pod_type<eT>::result T; + + const uword X_n_rows = X.n_rows; + const uword X_n_cols = X.n_cols; + const uword X_n_elem = X.n_elem; + + arma_debug_check( (X_n_elem == 0), "mean(): given object has no elements" ); + + eT val = eT(0); + + if(X_n_rows == 1) + { + const Mat<eT>& A = X.m; + + const uword start_row = X.aux_row1; + const uword start_col = X.aux_col1; + + const uword end_col_p1 = start_col + X_n_cols; + + uword i,j; + for(i=start_col, j=start_col+1; j < end_col_p1; i+=2, j+=2) + { + val += A.at(start_row, i); + val += A.at(start_row, j); + } + + if(i < end_col_p1) + { + val += A.at(start_row, i); + } + } + else + { + for(uword col=0; col < X_n_cols; ++col) + { + val += arrayops::accumulate(X.colptr(col), X_n_rows); + } + } + + const eT result = val / T(X_n_elem); + + return arma_isfinite(result) ? result : op_mean::mean_all_robust(X); + } + + + +template<typename eT> +inline +eT +op_mean::mean_all_robust(const subview<eT>& X) + { + arma_extra_debug_sigprint(); + + typedef typename get_pod_type<eT>::result T; + + const uword X_n_rows = X.n_rows; + const uword X_n_cols = X.n_cols; + + const uword start_row = X.aux_row1; + const uword start_col = X.aux_col1; + + const uword end_row_p1 = start_row + X_n_rows; + const uword end_col_p1 = start_col + X_n_cols; + + const Mat<eT>& A = X.m; + + + eT r_mean = eT(0); + + if(X_n_rows == 1) + { + uword i=0; + + for(uword col = start_col; col < end_col_p1; ++col, ++i) + { + r_mean = r_mean + (A.at(start_row,col) - r_mean)/T(i+1); + } + } + else + { + uword i=0; + + for(uword col = start_col; col < end_col_p1; ++col) + for(uword row = start_row; row < end_row_p1; ++row, ++i) + { + r_mean = r_mean + (A.at(row,col) - r_mean)/T(i+1); + } + } + + return r_mean; + } + + + +template<typename eT> +inline +eT +op_mean::mean_all(const diagview<eT>& X) + { + arma_extra_debug_sigprint(); + + typedef typename get_pod_type<eT>::result T; + + const uword X_n_elem = X.n_elem; + + arma_debug_check( (X_n_elem == 0), "mean(): given object has no elements" ); + + eT val = eT(0); + + for(uword i=0; i<X_n_elem; ++i) + { + val += X[i]; + } + + const eT result = val / T(X_n_elem); + + return arma_isfinite(result) ? result : op_mean::mean_all_robust(X); + } + + + +template<typename eT> +inline +eT +op_mean::mean_all_robust(const diagview<eT>& X) + { + arma_extra_debug_sigprint(); + + typedef typename get_pod_type<eT>::result T; + + const uword X_n_elem = X.n_elem; + + eT r_mean = eT(0); + + for(uword i=0; i<X_n_elem; ++i) + { + r_mean = r_mean + (X[i] - r_mean)/T(i+1); + } + + return r_mean; + } + + + +template<typename T1> +inline +typename T1::elem_type +op_mean::mean_all(const Base<typename T1::elem_type, T1>& X) + { + arma_extra_debug_sigprint(); + + typedef typename T1::elem_type eT; + + const unwrap<T1> tmp(X.get_ref()); + const Mat<eT>& A = tmp.M; + + const uword A_n_elem = A.n_elem; + + arma_debug_check( (A_n_elem == 0), "mean(): given object has no elements" ); + + return op_mean::direct_mean(A.memptr(), A_n_elem); + } + + + +template<typename eT> +arma_inline +eT +op_mean::robust_mean(const eT A, const eT B) + { + return A + (B - A)/eT(2); + } + + + +template<typename T> +arma_inline +std::complex<T> +op_mean::robust_mean(const std::complex<T>& A, const std::complex<T>& B) + { + return A + (B - A)/T(2); + } + + + +//! @} +