annotate SegEval.py @ 3:bac230fcd7bd

add linux build of levinsonext
author mitian
date Tue, 07 Apr 2015 17:58:37 +0100
parents ef1fd8b0f3c4
children 56a2ca9359d0
rev   line source
mi@0 1 #!/usr/bin/env python
mi@0 2 # encoding: utf-8
mi@0 3 """
mi@0 4 SegEval.py
mi@0 5
mi@0 6 The main segmentation program.
mi@0 7
mi@0 8 Created by mi tian on 2015-04-02.
mi@0 9 Copyright (c) 2015 __MyCompanyName__. All rights reserved.
mi@0 10 """
mi@0 11
mi@0 12 # Load starndard python libs
mi@0 13 import sys, os, optparse, csv
mi@0 14 from itertools import combinations
mi@0 15 from os.path import join, isdir, isfile, abspath, dirname, basename, split, splitext
mi@0 16 from copy import copy
mi@0 17
mi@0 18 import matplotlib
mi@0 19 # matplotlib.use('Agg')
mi@0 20 import matplotlib.pyplot as plt
mi@0 21 import matplotlib.gridspec as gridspec
mi@0 22 import numpy as np
mi@0 23 import scipy as sp
mi@0 24 from scipy.signal import correlate2d, convolve2d, filtfilt, resample
mi@0 25 from scipy.ndimage.filters import *
mi@0 26 from sklearn.decomposition import PCA
mi@0 27 from sklearn.mixture import GMM
mi@0 28 from sklearn.cluster import KMeans
mi@0 29 from sklearn.preprocessing import normalize
mi@0 30 from sklearn.metrics.pairwise import pairwise_distances
mi@0 31
mi@0 32 # Load dependencies
mi@0 33 from utils.SegUtil import getMean, getStd, getDelta, getSSM, reduceSSM, upSample, normaliseFeature
mi@0 34 from utils.PeakPickerUtil import PeakPicker
mi@0 35 from utils.gmmdist import *
mi@0 36 from utils.GmmMetrics import GmmDistance
mi@0 37 from utils.RankClustering import rClustering
mi@0 38 from utils.kmeans import Kmeans
mi@0 39 from utils.PathTracker import PathTracker
mi@0 40
mi@0 41 # Load bourdary retrieval utilities
mi@0 42 import cnmf as cnmf_S
mi@0 43 import foote as foote_S
mi@0 44 import sf as sf_S
mi@0 45 import fmc2d as fmc2d_S
mitian@1 46 import novelty as novelty_S
mitian@1 47
mitian@1 48 # Algorithm params
mitian@1 49 h = 8 # Size of median filter for features in C-NMF
mitian@1 50 R = 15 # Size of the median filter for the activation matrix C-NMF
mitian@3 51 rank = 8 # Rank of decomposition for the boundaries
mitian@1 52 rank_labels = 6 # Rank of decomposition for the labels
mitian@1 53 R_labels = 6 # Size of the median filter for the labels
mitian@1 54 # Foote
mitian@1 55 M = 2 # Median filter for the audio features (in beats)
mitian@1 56 Mg = 32 # Gaussian kernel size
mitian@1 57 L = 16 # Size of the median filter for the adaptive threshold
mitian@1 58 # 2D-FMC
mitian@1 59 N = 8 # Size of the fixed length segments (for 2D-FMC)
mitian@1 60
mi@0 61
mi@0 62 # Define arg parser
mi@0 63 def parse_args():
mi@0 64 op = optparse.OptionParser()
mi@0 65 # IO options
mi@0 66 op.add_option('-g', '--gammatonegram-features', action="store", dest="GF", default='/Volumes/c4dm-03/people/mit/features/gammatonegram/qupujicheng/2048', type="str", help="Loading gammatone features from.." )
mi@0 67 op.add_option('-s', '--spectrogram-features', action="store", dest="SF", default='/Volumes/c4dm-03/people/mit/features/spectrogram/qupujicheng/2048', type="str", help="Loading spectral features from.." )
mi@0 68 op.add_option('-t', '--tempogram-features', action="store", dest="TF", default='/Volumes/c4dm-03/people/mit/features/tempogram/qupujicheng/tempo_features_6s', type="str", help="Loading tempogram features from.." )
mi@0 69 op.add_option('-f', '--featureset', action="store", dest="FEATURES", default='[0, 1, 2, 3]', type="str", help="Choose feature subsets (input a list of integers) used for segmentation -- gammtone, chroma, timbre, tempo -- 0, 1, 2, 3." )
mi@0 70 op.add_option('-a', '--annotations', action="store", dest="GT", default='/Volumes/c4dm-03/people/mit/annotation/qupujicheng/lowercase', type="str", help="Loading annotation files from.. ")
mi@0 71 op.add_option('-o', '--ouput', action="store", dest="OUTPUT", default='/Volumes/c4dm-03/people/mit/segmentation/gammatone/qupujicheng', type="str", help="Write segmentation results to ")
mi@0 72
mi@0 73 # boundary retrieval options
mitian@1 74 op.add_option('-b', '--bounrary-method', action="store", dest="BOUNDARY", type='choice', choices=['novelty', 'cnmf', 'foote', 'sf'], default='novelty', help="Choose boundary retrieval algorithm ('novelty', 'cnmf', 'sf', 'fmc2d')." )
mitian@1 75 op.add_option('-l', '--labeling-method', action="store", dest="LABEL", type='choice', choices=['cnmf', 'fmc2d'], default='cnmf', help="Choose boundary labeling algorithm ('cnmf', 'fmc2d')." )
mi@0 76
mi@0 77 # Plot/print/mode options
mi@0 78 op.add_option('-p', '--plot', action="store_true", dest="PLOT", default=False, help="Save plots")
mi@0 79 op.add_option('-e', '--test-mode', action="store_true", dest="TEST", default=False, help="Test mode")
mi@0 80 op.add_option('-v', '--verbose-mode', action="store_true", dest="VERBOSE", default=False, help="Print results in verbose mode.")
mi@0 81
mi@0 82 return op.parse_args()
mi@0 83 options, args = parse_args()
mi@0 84
mi@0 85 class FeatureObj() :
mi@0 86 __slots__ = ['key', 'audio', 'timestamps', 'gammatone_features', 'tempo_features', 'timbre_features', 'harmonic_features', 'gammatone_ssm', 'tempo_ssm', 'timbre_features', 'harmonic_ssm', 'ssm_timestamps']
mi@0 87
mi@0 88 class AudioObj():
mi@0 89 __slots__ = ['name', 'feature_list', 'gt', 'label', 'gammatone_features', 'tempo_features', 'timbre_features', 'harmonic_features', 'combined_features',\
mi@0 90 'gammatone_ssm', 'tempo_ssm', 'timbre_ssm', 'harmonic_ssm', 'combined_ssm', 'ssm', 'ssm_timestamps', 'tempo_timestamps']
mi@0 91
mi@0 92 class EvalObj():
mi@0 93 __slots__ = ['TP', 'FP', 'FN', 'P', 'R', 'F', 'AD', 'DA']
mi@0 94
mi@0 95
mi@0 96 class SSMseg(object):
mi@0 97 '''The main segmentation object'''
mi@0 98 def __init__(self):
mi@0 99 self.SampleRate = 44100
mi@0 100 self.NqHz = self.SampleRate/2
mi@0 101 self.timestamp = []
mi@0 102 self.previousSample = 0.0
mi@0 103 self.featureWindow = 6.0
mi@0 104 self.featureStep = 3.0
mi@0 105 self.kernel_size = 64 # Adjust this param according to the feature resolution.pq
mi@0 106 self.blockSize = 2048
mi@0 107 self.stepSize = 1024
mi@0 108
mi@0 109 '''NOTE: Match the following params with those used for feature extraction!'''
mi@0 110
mi@0 111 '''NOTE: Unlike spectrogram ones, Gammatone features are extracted without taking an FFT. The windowing is done under the purpose of chunking
mi@0 112 the audio to facilitate the gammatone filtering with the specified blockSize and stepSize. The resulting gammatonegram is aggregated every
mi@0 113 gammatoneLen without overlap.'''
mi@0 114 self.gammatoneLen = 2048
mi@0 115 self.gammatoneBandGroups = [0, 2, 6, 10, 13, 17, 20]
mi@0 116 self.nGammatoneBands = 20
mi@0 117 self.lowFreq = 100
mi@0 118 self.highFreq = self.SampleRate / 4
mi@0 119
mi@0 120 '''Settings for extracting tempogram features.'''
mi@0 121 self.tempoWindow = 6.0
mi@0 122 self.bpmBands = [30, 45, 60, 80, 100, 120, 180, 240, 400, 600]
mi@0 123
mitian@3 124 '''Peak picking settings for novelty based method'''
mi@0 125 self.threshold = 50
mi@0 126 self.confidence_threshold = 0.5
mi@0 127 self.delta_threshold = 0.0
mi@0 128 self.backtracking_threshold = 1.9
mi@0 129 self.polyfitting_on = True
mi@0 130 self.medfilter_on = True
mi@0 131 self.LPfilter_on = True
mi@0 132 self.whitening_on = False
mi@0 133 self.aCoeffs = [1.0000, -0.5949, 0.2348]
mi@0 134 self.bCoeffs = [0.1600, 0.3200, 0.1600]
mi@0 135 self.cutoff = 0.34
mi@0 136 self.medianWin = 7
mi@0 137
mi@0 138
mitian@3 139 def pairwiseF(self, annotation, detection, tolerance=3.0, combine=1.0, idx2time=None):
mi@0 140 '''Pairwise F measure evaluation of detection rates.'''
mitian@3 141
mitian@3 142 if idx2time:
mitian@3 143 # Map detected idxs to real time
mitian@3 144 detection = [idx2time[int(np.rint(i))] for i in detection] + [ao.gt[-1]]
mi@0 145 # print 'detection', detection
mi@0 146 detection = np.append(detection, annotation[-1])
mi@0 147 res = EvalObj()
mi@0 148 res.TP = 0 # Total number of matched ground truth and experimental data points
mi@0 149 gt = len(annotation) # Total number of ground truth data points
mi@0 150 dt = len(detection) # Total number of experimental data points
mi@0 151 foundIdx = []
mi@0 152 D_AD = np.zeros(gt)
mi@0 153 D_DA = np.zeros(dt)
mi@0 154
mi@0 155 for dtIdx in xrange(dt):
mi@0 156 D_DA[dtIdx] = np.min(abs(detection[dtIdx] - annotation))
mi@0 157 for gtIdx in xrange(gt):
mi@0 158 D_AD[gtIdx] = np.min(abs(annotation[gtIdx] - detection))
mi@0 159 for dtIdx in xrange(dt):
mi@0 160 if (annotation[gtIdx] >= detection[dtIdx] - tolerance/2.0) and (annotation[gtIdx] <= detection[dtIdx] + tolerance/2.0):
mi@0 161 res.TP = res.TP + 1.0
mi@0 162 foundIdx.append(gtIdx)
mi@0 163 foundIdx = list(set(foundIdx))
mi@0 164 res.TP = len(foundIdx)
mi@0 165 res.FP = max(0, dt - res.TP)
mi@0 166 res.FN = max(0, gt - res.TP)
mi@0 167
mi@0 168 res.AD = np.mean(D_AD)
mi@0 169 res.DA = np.mean(D_DA)
mi@0 170
mi@0 171 res.P, res.R, res.F = 0.0, 0.0, 0.0
mi@0 172
mi@0 173 if res.TP == 0:
mi@0 174 return res
mi@0 175
mi@0 176 res.P = res.TP / float(dt)
mi@0 177 res.R = res.TP / float(gt)
mi@0 178 res.F = 2 * res.P * res.R / (res.P + res.R)
mi@0 179 return res
mi@0 180
mitian@3 181 def wirteIndividualHeader(self, filename):
mitian@3 182 '''Write header of output files for individual features.'''
mitian@3 183
mitian@3 184 with open(filename, 'a') as f:
mitian@3 185 csvwriter = csv.writer(f, delimiter=',')
mitian@3 186 csvwriter.writerow(['audio', 'gammatone_tp_05', 'gammatone_fp_05', 'gammatone_fn_05', 'gammatone_P_05', 'gammatone_R_05', 'gammatone_F_05', 'gammatone_AD_05', 'gammatone_DA_05', 'gammatone_tp_3', \
mitian@3 187 'gammatone_fp_3', 'gammatone_fn_3', 'gammatone_P_3', 'gammatone_R_3', 'gammatone_F_3', 'gammatone_AD_3', 'gammatone_DA_3', 'harmonic_tp_05', 'harmonic_fp_05', 'harmonic_fn_05', 'harmonic_P_05', \
mitian@3 188 'harmonic_R_05', 'harmonic_F_05', 'harmonic_AD_05', 'harmonic_DA_05', 'harmonic_tp_3', 'harmonic_fp_3', 'harmonic_fn_3', 'harmonic_P_3', 'harmonic_R_3', 'harmonic_F_3', 'harmonic_AD_3', 'harmonic_DA_3', \
mitian@3 189 'timbre_tp_05', 'timbre_fp_05', 'timbre_fn_05', 'timbre_P_05', 'timbre_R_05', 'timbre_F_05', 'timbre_AD_05', 'timbre_DA_05', 'timbre_tp_3', 'timbre_fp_3', 'timbre_fn_3', 'timbre_P_3', 'timbre_R_3', \
mitian@3 190 'timbre_F_3', 'timbre_AD_3', 'timbre_DA_3', 'tempo_tp_05', 'tempo_fp_05', 'tempo_fn_05', 'tempo_P_05', 'tempo_R_05', 'tempo_F_05', 'tempo_AD_05', 'tempo_DA_05', \
mitian@3 191 'tempo_tp_3', 'tempo_fp_3', 'tempo_fn_3', 'tempo_P_3', 'tempo_R_3', 'tempo_F_3', 'tempo_AD_3', 'tempo_DA_3'])
mitian@3 192
mitian@3 193 def wirteIndividualRes(self, filename, ao_name, gt_res_05, gt_res_3, harmonic_res_05, harmonic_res_3, timbre_res_05, timbre_res_3, tempo_res_05, tempo_res_3):
mitian@3 194 '''Write result of single detection for individual features.'''
mitian@3 195
mitian@3 196 with open(filename, 'a') as f:
mitian@3 197 csvwriter = csv.writer(f, delimiter=',')
mitian@3 198 csvwriter.writerow([ao_name, gt_res_05.TP, gt_res_05.FP, gt_res_05.FN, gt_res_05.P, gt_res_05.R, gt_res_05.F, gt_res_05.AD, gt_res_05.DA, gt_res_3.TP, gt_res_3.FP, gt_res_3.FN, gt_res_3.P, \
mitian@3 199 gt_res_3.R, gt_res_3.F, gt_res_3.AD, gt_res_3.DA, harmonic_res_05.TP, harmonic_res_05.FP, harmonic_res_05.FN, harmonic_res_05.P, harmonic_res_05.R, harmonic_res_05.F, harmonic_res_05.AD, harmonic_res_05.DA, \
mitian@3 200 harmonic_res_3.TP, harmonic_res_3.FP, harmonic_res_3.FN, harmonic_res_3.P, harmonic_res_3.R, harmonic_res_3.F, harmonic_res_3.AD, harmonic_res_3.DA, timbre_res_05.TP, timbre_res_05.FP, \
mitian@3 201 timbre_res_05.FN, timbre_res_05.P, timbre_res_05.R, timbre_res_05.F, timbre_res_05.AD, timbre_res_05.DA, timbre_res_3.TP, timbre_res_3.FP, timbre_res_3.FN, timbre_res_3.P, timbre_res_3.R, timbre_res_3.F, \
mitian@3 202 timbre_res_3.AD, timbre_res_3.DA, tempo_res_05.TP, tempo_res_05.FP, tempo_res_05.FN, tempo_res_05.P, tempo_res_05.R, tempo_res_05.F, tempo_res_05.AD, tempo_res_05.DA, tempo_res_3.TP, tempo_res_3.FP, \
mitian@3 203 tempo_res_3.FN, tempo_res_3.P, tempo_res_3.R, tempo_res_3.F, tempo_res_3.AD, tempo_res_3.DA])
mitian@3 204
mitian@3 205 def writeCombinedHeader(self, filename):
mitian@3 206 '''Write header of output files for combined features.'''
mitian@3 207
mitian@3 208 with open(filename, 'a') as f:
mitian@3 209 csvwriter = csv.writer(f, delimiter=',')
mitian@3 210 csvwriter.writerow(['audio', 'gt_tb_P_0.5', 'gt_tb_R_0.5', 'gt_tb_F_0.5', 'gt_tb_P_3', 'gt_tb_R_3', 'gt_tb_F_3', 'gt_tp_P_0.5', 'gt_tp_R_0.5', 'gt_tp_F_0.5', 'gt_tp_P_3', 'gt_tp_R_3', 'gt_tp_F_3',\
mitian@3 211 'gt_hm_P_0.5', 'gt_hm_R_0.5', 'gt_hm_F_0.5', 'gt_hm_P_3', 'gt_hm_R_3', 'gt_hm_F_3', 'tb_tp_P_0.5', 'tb_tp_R_0.5', 'tb_tp_F_0.5', 'tb_tp_P_3', 'tb_tp_R_3', 'tb_tp_F_3', 'tb_hm_P_0.5', 'tb_hm_R_0.5', 'tb_hm_F_0.5', \
mitian@3 212 'tb_hm_P_3', 'tb_hm_R_3', 'tb_hm_F_3', 'tp_hm_P_0.5', 'tp_hm_R_0.5', 'tp_hm_F_0.5', 'tp_hm_P_3', 'tp_hm_R_3', 'tp_hm_F_3', 'gt_tb_tp_P_0.5', 'gt_tb_tp_R_0.5', 'gt_tb_tp_F_0.5', 'gt_tb_tp_P_3', 'gt_tb_tp_R_3', \
mitian@3 213 'gt_tb_tp_F_3', 'gt_tb_hm_P_0.5', 'gt_tb_hm_R_0.5', 'gt_tb_hm_F_0.5', 'gt_tb_hm_P_3', 'gt_tb_hm_R_3', 'gt_tb_hm_F_3', 'gt_tp_hm_P_0.5', 'gt_tp_hm_R_0.5', 'gt_tp_hm_F_0.5', 'gt_tp_hm_P_3', 'gt_tp_hm_R_3', 'gt_tp_hm_F_3', \
mitian@3 214 'tb_tp_hm_P_0.5', 'tb_tp_hm_R_0.5', 'tb_tp_hm_F_0.5', 'tb_tp_hm_P_3', 'tb_tp_hm_R_3', 'tb_tp_hm_F_3', 'gt_tb_tp_hm_P_0.5', 'gt_tb_tp_hm_R_0.5', 'gt_tb_tp_hm_F_0.5', 'gt_tb_tp_hm_P_3', 'gt_tb_tp_hm_R_3', 'gt_tb_tp_hm_F_3'])
mitian@3 215
mitian@3 216 def wirteCombinedRes(self, filename, ao_name, gt_hm_res_05, gt_hm_res_3, gt_tb_res_05, gt_tb_res_3, gt_tp_res_05, gt_tp_res_3, hm_tb_res_05, hm_tb_res_3, hm_tp_res_05, hm_tp_res_3, \
mitian@3 217 tb_tp_res_05, tb_tp_res_3, gt_hm_tb_res_05, gt_hm_tb_res_3, gt_hm_tp_res_05, gt_hm_tp_res_3, gt_tb_tp_res_05, gt_tb_tp_res_3, hm_tb_tp_res_05, hm_tb_tp_res_3):
mitian@3 218 '''Write result of single detection for combined features.'''
mitian@3 219
mitian@3 220 with open(filename, 'a') as f:
mitian@3 221 csvwriter = csv.writer(f, delimiter=',')
mitian@3 222 csvwriter.writerow([ao_name, gt_tb_res_05.P, gt_tb_res_05.R, gt_tb_res_05.F, gt_tb_res_3.P, gt_tb_res_3.R, gt_tb_res_3.F, gt_tp_res_05.P, gt_tp_res_05.R, gt_tp_res_05.F, gt_tp_res_3.P, gt_tp_res_3.R, gt_tp_res_3.F, \
mitian@3 223 gt_hm_res_05.P, gt_hm_res_05.R, gt_hm_res_05.F, gt_hm_res_3.P, gt_hm_res_3.R, gt_hm_res_3.F, tb_tp_res_05.P, tb_tp_res_05.R, tb_tp_res_05.F, tb_tp_res_3.P, tb_tp_res_3.R, tb_tp_res_3.F, \
mitian@3 224 tb_hm_res_05.P, tb_hm_res_05.R, tb_hm_res_05.F, tb_hm_res_3.P, tb_hm_res_3.R, tb_hm_res_3.F, tp_hm_res_05.P, tp_hm_res_05.R, tp_hm_res_05.F, tp_hm_res_3.P, tp_hm_res_3.R, tp_hm_res_3.F, \
mitian@3 225 gt_tb_tp_res_05.P, gt_tb_tp_res_05.R, gt_tb_tp_res_05.F, gt_tb_tp_res_3.P, gt_tb_tp_res_3.R, gt_tb_tp_res_3.F, gt_tb_hm_res_05.P, gt_tb_hm_res_05.R, gt_tb_hm_res_05.F, gt_tb_hm_res_3.P, gt_tb_hm_res_3.R, gt_tb_hm_res_3.F, \
mitian@3 226 gt_tp_hm_res_05.P, gt_tp_hm_res_05.R, gt_tp_hm_res_05.F, gt_tp_hm_res_3.P, gt_tp_hm_res_3.R, gt_tp_hm_res_3.F, tb_tp_hm_res_05.P, tb_tp_hm_res_05.R, tb_tp_hm_res_05.F, tb_tp_hm_res_3.P, tb_tp_hm_res_3.R, tb_tp_hm_res_3.F, \
mitian@3 227 gt_tb_tp_hm_res_05.P, gt_tb_tp_hm_res_05.R, gt_tb_tp_hm_res_05.F, gt_tb_tp_hm_res_3.P, gt_tb_tp_hm_res_3.R, gt_tb_tp_hm_res_3.F])
mitian@3 228
mitian@3 229
mi@0 230 def process(self):
mi@0 231 '''For the aggregated input features, discard a propertion each time as the pairwise distances within the feature space descending.
mi@0 232 In the meanwhile evaluate the segmentation result and track the trend of perfomance changing by measuring the feature selection
mi@0 233 threshold - segmentation f measure curve.
mi@0 234 '''
mi@0 235
mi@0 236 peak_picker = PeakPicker()
mi@0 237 peak_picker.params.alpha = 9.0 # Alpha norm
mi@0 238 peak_picker.params.delta = self.delta_threshold # Adaptive thresholding delta
mi@0 239 peak_picker.params.QuadThresh_a = (100 - self.threshold) / 1000.0
mi@0 240 peak_picker.params.QuadThresh_b = 0.0
mi@0 241 peak_picker.params.QuadThresh_c = (100 - self.threshold) / 1500.0
mi@0 242 peak_picker.params.rawSensitivity = 20
mi@0 243 peak_picker.params.aCoeffs = self.aCoeffs
mi@0 244 peak_picker.params.bCoeffs = self.bCoeffs
mi@0 245 peak_picker.params.preWin = self.medianWin
mi@0 246 peak_picker.params.postWin = self.medianWin + 1
mi@0 247 peak_picker.params.LP_on = self.LPfilter_on
mi@0 248 peak_picker.params.Medfilt_on = self.medfilter_on
mi@0 249 peak_picker.params.Polyfit_on = self.polyfitting_on
mi@0 250 peak_picker.params.isMedianPositive = False
mi@0 251
mi@0 252 # Settings used for feature extraction
mi@0 253 feature_window_frame = int(self.SampleRate / self.gammatoneLen * self.featureWindow)
mi@0 254 feature_step_frame = int(0.5 * self.SampleRate / self.gammatoneLen * self.featureStep)
mi@0 255 aggregation_window, aggregation_step = 100, 50
mi@0 256 featureRate = float(self.SampleRate) / self.stepSize
mi@0 257
mi@0 258 audio_files = [x for x in os.listdir(options.GT) if not x.startswith(".") ]
mi@0 259 # audio_files = audio_files[:2]
mi@0 260 audio_files.sort()
mi@0 261 audio_list = []
mi@0 262
mi@0 263 gammatone_feature_list = [i for i in os.listdir(options.GF) if not i.startswith('.')]
mi@0 264 gammatone_feature_list = ['contrast4', 'rolloff', 'dct']
mi@0 265 tempo_feature_list = [i for i in os.listdir(options.TF) if not i.startswith('.')]
mi@0 266 tempo_feature_list = ['intensity_bpm', 'loudness_bpm']
mi@0 267 timbre_feature_list = ['mfcc']
mi@0 268 harmonic_feature_list = ['nnls']
mi@0 269
mi@0 270 gammatone_feature_list = [join(options.GF, f) for f in gammatone_feature_list]
mi@0 271 timbre_feature_list = [join(options.SF, f) for f in timbre_feature_list]
mi@0 272 tempo_feature_list = [join(options.TF, f) for f in tempo_feature_list]
mi@0 273 harmonic_feature_list = [join(options.SF, f) for f in harmonic_feature_list]
mi@0 274
mi@0 275 fobj_list = []
mi@0 276
mi@0 277 # For each audio file, load specific features
mi@0 278 for audio in audio_files:
mi@0 279 ao = AudioObj()
mi@0 280 ao.name = splitext(audio)[0]
mi@0 281 print ao.name
mi@0 282 # annotation_file = join(options.GT, ao.name+'.txt') # iso, salami
mi@0 283 # ao.gt = np.genfromtxt(annotation_file, usecols=0)
mi@0 284 # ao.label = np.genfromtxt(annotation_file, usecols=1, dtype=str)
mi@0 285 annotation_file = join(options.GT, ao.name+'.csv') # qupujicheng
mi@0 286 ao.gt = np.genfromtxt(annotation_file, usecols=0, delimiter=',')
mi@0 287 ao.label = np.genfromtxt(annotation_file, usecols=1, delimiter=',', dtype=str)
mi@0 288
mi@0 289 gammatone_featureset, timbre_featureset, tempo_featureset, harmonic_featureset = [], [], [], []
mi@0 290 for feature in gammatone_feature_list:
mi@0 291 for f in os.listdir(feature):
mi@0 292 if f[:f.find('_vamp')]==ao.name:
mi@0 293 gammatone_featureset.append(np.genfromtxt(join(feature, f), delimiter=',',filling_values=0.0)[:,1:])
mi@0 294 break
mi@0 295 if len(gammatone_feature_list) > 1:
mi@0 296 n_frame = np.min([x.shape[0] for x in gammatone_featureset])
mi@0 297 gammatone_featureset = [x[:n_frame,:] for x in gammatone_featureset]
mi@0 298 ao.gammatone_features = np.hstack((gammatone_featureset))
mi@0 299 else:
mi@0 300 ao.gammatone_features = gammatone_featureset[0]
mi@0 301
mi@0 302 for feature in timbre_feature_list:
mi@0 303 for f in os.listdir(feature):
mi@0 304 if f[:f.find('_vamp')]==ao.name:
mi@0 305 timbre_featureset.append(np.genfromtxt(join(feature, f), delimiter=',',filling_values=0.0)[:,1:])
mi@0 306 break
mi@0 307 if len(timbre_feature_list) > 1:
mi@0 308 n_frame = np.min([x.shape[0] for x in timbre_featureset])
mi@0 309 timbre_featureset = [x[:n_frame,:] for x in timbre_featureset]
mi@0 310 ao.timbre_features = np.hstack((timbre_featureset))
mi@0 311 else:
mi@0 312 ao.timbre_features = timbre_featureset[0]
mi@0 313 for feature in tempo_feature_list:
mi@0 314 for f in os.listdir(feature):
mi@0 315 if f[:f.find('_vamp')]==ao.name:
mi@0 316 tempo_featureset.append(np.genfromtxt(join(feature, f), delimiter=',',filling_values=0.0)[1:,1:])
mi@0 317 ao.tempo_timestamps = np.genfromtxt(join(feature, f), delimiter=',',filling_values=0.0)[1:,0]
mi@0 318 break
mi@0 319 if len(tempo_feature_list) > 1:
mi@0 320 n_frame = np.min([x.shape[0] for x in tempo_featureset])
mi@0 321 tempo_featureset = [x[:n_frame,:] for x in tempo_featureset]
mi@0 322 ao.tempo_features = np.hstack((tempo_featureset))
mi@0 323 else:
mi@0 324 ao.tempo_features = tempo_featureset[0]
mi@0 325 for feature in harmonic_feature_list:
mi@0 326 for f in os.listdir(feature):
mi@0 327 if f[:f.find('_vamp')]==ao.name:
mi@0 328 harmonic_featureset.append(np.genfromtxt(join(feature, f), delimiter=',',filling_values=0.0)[:,1:])
mi@0 329 break
mi@0 330 if len(harmonic_feature_list) > 1:
mi@0 331 n_frame = np.min([x.shape[0] for x in harmonic_featureset])
mi@0 332 harmonic_featureset = [x[:n_frame,:] for x in harmonic_featureset]
mi@0 333 ao.harmonic_features = np.hstack((harmonic_featureset))
mi@0 334 else:
mi@0 335 ao.harmonic_features = harmonic_featureset[0]
mi@0 336
mi@0 337 # Get aggregated features for computing ssm
mi@0 338 aggregation_window, aggregation_step = 1,1
mi@0 339 featureRate = float(self.SampleRate) /self.stepSize
mi@0 340 pca = PCA(n_components=5)
mi@0 341
mi@0 342 # Resample and normalise features
mi@0 343 ao.gammatone_features = resample(ao.gammatone_features, step)
mi@0 344 ao.gammatone_features = normaliseFeature(ao.gammatone_features)
mi@0 345 ao.timbre_features = resample(ao.timbre_features, step)
mi@0 346 ao.timbre_features = normaliseFeature(ao.timbre_features)
mi@0 347 ao.harmonic_features = resample(ao.harmonic_features, step)
mi@0 348 ao.harmonic_features = normaliseFeature(ao.harmonic_features)
mi@0 349 ao.tempo_features = normaliseFeature(ao.harmonic_features)
mi@0 350
mi@0 351 pca.fit(ao.gammatone_features)
mi@0 352 ao.gammatone_features = pca.transform(ao.gammatone_features)
mi@0 353 ao.gammatone_ssm = getSSM(ao.gammatone_features)
mi@0 354
mi@0 355 pca.fit(ao.tempo_features)
mi@0 356 ao.tempo_features = pca.transform(ao.tempo_features)
mi@0 357 ao.tempo_ssm = getSSM(ao.tempo_features)
mi@0 358
mi@0 359 pca.fit(ao.timbre_features)
mi@0 360 ao.timbre_features = pca.transform(ao.timbre_features)
mi@0 361 ao.timbre_ssm = getSSM(ao.timbre_features)
mi@0 362
mi@0 363 pca.fit(ao.harmonic_features)
mi@0 364 ao.harmonic_features = pca.transform(ao.harmonic_features)
mi@0 365 ao.harmonic_ssm = getSSM(ao.harmonic_features)
mi@0 366
mi@0 367 ao.ssm_timestamps = np.array(map(lambda x: ao.tempo_timestamps[aggregation_step*x], np.arange(0, ao.gammatone_ssm.shape[0])))
mi@0 368
mi@0 369 audio_list.append(ao)
mi@0 370
mitian@3 371 # Prepare output files.
mitian@3 372 outfile1 = join(options.OUTPUT, 'individual_novelty.csv')
mitian@3 373 outfile2 = join(options.OUTPUT, 'individual_foote.csv')
mitian@3 374 outfile3 = join(options.OUTPUT, 'individual_sf.csv')
mitian@3 375 outfile4 = join(options.OUTPUT, 'individual_cnmf.csv')
mitian@3 376
mitian@3 377 outfile5 = join(options.OUTPUT, 'combined_novelty.csv')
mitian@3 378 outfile6 = join(options.OUTPUT, 'combined_foote.csv')
mitian@3 379 outfile7 = join(options.OUTPUT, 'combined_sf.csv')
mitian@3 380 outfile8 = join(options.OUTPUT, 'combined_cnmf.csv')
mitian@3 381
mitian@3 382 self.wirteIndividualHeader(outfile1)
mitian@3 383 self.wirteIndividualHeader(outfile2)
mitian@3 384 self.wirteIndividualHeader(outfile3)
mitian@3 385 self.wirteIndividualHeader(outfile4)
mitian@3 386
mitian@3 387 # self.wirteCombinedlHeader(outfile5)
mitian@3 388 # self.wirteCombinedlHeader(outfile6)
mitian@3 389 self.wirteCombinedlHeader(outfile7)
mitian@3 390 # self.wirteCombinedlHeader(outfile8)
mitian@3 391
mi@0 392 print 'Segmenting using %s method' %options.BOUNDARY
mi@0 393 for i,ao in enumerate(audio_list):
mi@0 394 print 'processing: %s' %ao.name
mitian@3 395
mitian@3 396 ############################################################################################################################################
mitian@3 397 # Experiment 1: segmentation using individual features.
mitian@3 398
mitian@3 399 gammatone_novelty, smoothed_gammatone_novelty, gammatone_novelty_idxs = novelty_S.process(ao.gammatone_ssm, self.kernel_size, peak_picker)
mitian@3 400 timbre_novelty, smoothed_timbre_novelty, timbre_novelty_idxs = novelty_S.process(ao.timbre_ssm, self.kernel_size, peak_picker)
mitian@3 401 tempo_novelty, smoothed_harmonic_novelty, tempo_novelty_idxs = novelty_S.process(ao.tempo_ssm, self.kernel_size, peak_picker)
mitian@3 402 harmonic_novelty, smoothed_tempo_novelty, harmonic_novelty_idxs = novelty_S.process(ao.harmonic_ssm, self.kernel_size, peak_picker)
mitian@3 403
mitian@3 404 gammatone_cnmf_idxs = cnmf_S.segmentation(ao.gammatone_features, rank=rank, R=R, h=h, niter=300)
mitian@3 405 timbre_cnmf_idxs = cnmf_S.segmentation(ao.timbre_features, rank=rank, R=R, h=h, niter=300)
mitian@3 406 tempo_cnmf_idxs = cnmf_S.segmentation(ao.tempo_features, rank=rank, R=R, h=h, niter=300)
mitian@3 407 harmonic_cnmf_idxs = cnmf_S.segmentation(ao.harmonic_features, rank=rank, R=R, h=h, niter=300)
mitian@3 408
mitian@3 409 gammatone_foote_idxs = foote_S.segmentation(ao.gammatone_features, M=M, Mg=Mg, L=L)
mitian@3 410 timbre_foote_idxs = foote_S.segmentation(ao.timbre_features, M=M, Mg=Mg, L=L)
mitian@3 411 tempo_foote_idxs = foote_S.segmentation(ao.tempo_features, M=M, Mg=Mg, L=L)
mitian@3 412 harmonic_foote_idxs = foote_S.segmentation(ao.harmonic_features, M=M, Mg=Mg, L=L)
mitian@3 413
mitian@3 414 gammatone_sf_idxs = sf_S.segmentation(ao.gammatone_features)
mitian@3 415 timbre_sf_idxs = sf_S.segmentation(ao.timbre_features)
mitian@3 416 tempo_sf_idxs = sf_S.segmentation(ao.tempo_features)
mitian@3 417 harmonic_sf_idxs = sf_S.segmentation(ao.harmonic_features)
mitian@1 418
mitian@3 419 # Evaluate and write results.
mitian@3 420 gt_novelty_05 = self.pairwiseF(ao.gt, gammatone_novelty_idxs, tolerance=0.5, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 421 gt_novelty_3 = self.pairwiseF(ao.gt, gammatone_novelty_idxs, tolerance=3, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 422 harmonic_novelty_05 = self.pairwiseF(ao.gt, harmonic_novelty_idxs, tolerance=0.5, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 423 harmonic_novelty_3 = self.pairwiseF(ao.gt, harmonic_novelty_idxs, tolerance=3, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 424 tempo_novelty_05 = self.pairwiseF(ao.gt, tempo_novelty_idxs, tolerance=0.5, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 425 tempo_novelty_3 = self.pairwiseF(ao.gt, tempo_novelty_idxs, tolerance=3, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 426 timbre_novelty_05 = self.pairwiseF(ao.gt, timbre_novelty_idxs, tolerance=0.5, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 427 timbre_novelty_3 = self.pairwiseF(ao.gt, timbre_novelty_idxs, tolerance=3, combine=1.0, idx2time=ao.ssm_timestamps)
mi@0 428
mitian@3 429 gt_cnmf_05 = self.pairwiseF(ao.gt, gammatone_cnmf_idxs, tolerance=0.5, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 430 gt_cnmf_3 = self.pairwiseF(ao.gt, gammatone_cnmf_idxs, tolerance=3, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 431 harmonic_cnmf_05 = self.pairwiseF(ao.gt, harmonic_cnmf_idxs, tolerance=0.5, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 432 harmonic_cnmf_3 = self.pairwiseF(ao.gt, harmonic_cnmf_idxs, tolerance=3, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 433 tempo_cnmf_05 = self.pairwiseF(ao.gt, tempo_cnmf_idxs, tolerance=0.5, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 434 tempo_cnmf_3 = self.pairwiseF(ao.gt, tempo_cnmf_idxs, tolerance=3, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 435 timbre_cnmf_05 = self.pairwiseF(ao.gt, timbre_cnmf_idxs, tolerance=0.5, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 436 timbre_cnmf_3 = self.pairwiseF(ao.gt, timbre_cnmf_idxs, tolerance=3, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 437
mitian@3 438 gt_sf_05 = self.pairwiseF(ao.gt, gammatone_sf_idxs, tolerance=0.5, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 439 gt_sf_3 = self.pairwiseF(ao.gt, gammatone_sf_idxs, tolerance=3, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 440 harmonic_sf_05 = self.pairwiseF(ao.gt, harmonic_sf_idxs, tolerance=0.5, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 441 harmonic_sf_3 = self.pairwiseF(ao.gt, harmonic_sf_idxs, tolerance=3, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 442 tempo_sf_05 = self.pairwiseF(ao.gt, tempo_sf_idxs, tolerance=0.5, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 443 tempo_sf_3 = self.pairwiseF(ao.gt, tempo_sf_idxs, tolerance=3, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 444 timbre_sf_05 = self.pairwiseF(ao.gt, timbre_sf_idxs, tolerance=0.5, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 445 timbre_sf_3 = self.pairwiseF(ao.gt, timbre_sf_idxs, tolerance=3, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 446
mitian@3 447 gt_foote_05 = self.pairwiseF(ao.gt, gammatone_foote_idxs, tolerance=0.5, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 448 gt_foote_3 = self.pairwiseF(ao.gt, gammatone_foote_idxs, tolerance=3, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 449 harmonic_foote_05 = self.pairwiseF(ao.gt, harmonic_foote_idxs, tolerance=0.5, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 450 harmonic_foote_3 = self.pairwiseF(ao.gt, harmonic_foote_idxs, tolerance=3, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 451 tempo_foote_05 = self.pairwiseF(ao.gt, tempo_foote_idxs, tolerance=0.5, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 452 tempo_foote_3 = self.pairwiseF(ao.gt, tempo_foote_idxs, tolerance=3, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 453 timbre_foote_05 = self.pairwiseF(ao.gt, timbre_foote_idxs, tolerance=0.5, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@3 454 timbre_foote_3 = self.pairwiseF(ao.gt, timbre_foote_idxs, tolerance=3, combine=1.0, idx2time=ao.ssm_timestamps)
mitian@1 455
mitian@3 456 self.writeIndividualRes(ao.name, outfile1, gt_novelty_05, gt_novelty_3, harmonic_novelty_05, harmonic_novelty_3, tempo_novelty_05, timbre_novelty_05, timbre_novelty_05, timbre_novelty_3)
mitian@3 457 self.writeIndividualRes(ao.name, outfile2, gt_cnmf_05, gt_cnmf_3, harmonic_cnmf_05, harmonic_cnmf_3, tempo_cnmf_05, timbre_cnmf_05, timbre_cnmf_05, timbre_cnmf_3)
mitian@3 458 self.writeIndividualRes(ao.name, outfile3, gt_sf_05, gt_sf_3, harmonic_sf_05, harmonic_sf_3, tempo_sf_05, timbre_sf_05, timbre_sf_05, timbre_sf_3)
mitian@3 459 self.writeIndividualRes(ao.name, outfile4, gt_foote_05, gt_foote_3, harmonic_foote_05, harmonic_foote_3, tempo_foote_05, timbre_foote_05, timbre_foote_05, timbre_foote_3)
mitian@1 460
mitian@1 461
mitian@3 462 ############################################################################################################################################
mitian@3 463 # Experiment 2: segmentation using combined features.
mi@2 464
mitian@3 465 # Dumping features.
mitian@3 466 gt_hm = np.hstack([ao.gammatone_features, ao.harmonic_features])
mitian@3 467 gt_tb = np.hstack([ao.gammatone_features, ao.timbre_features])
mitian@3 468 gt_tp = np.hstack([ao.gammatone_features, ao.tempo_features])
mitian@3 469 hm_tb = np.hstack([ao.harmonic_features, ao.timbre_features])
mitian@3 470 hm_tp = np.hstack([ao.harmonic_features, ao.tempo_features])
mitian@3 471 tb_tp = np.hstack([ao.timbre_features, ao.tempo_features])
mitian@3 472 gt_hm_tp = np.hstack([ao.gammatone_features, ao.harmonic_features, ao.tempo_features])
mitian@3 473 gt_tb_tp = np.hstack([ao.gammatone_features, ao.timbre_features, ao.tempo_features])
mitian@3 474 hm_tb_tp = np.hstack([ao.harmonic_features, ao.timbre_features, ao.tempo_features])
mitian@3 475 gt_hm_tb_tp = np.hstack([ao.gammatone_features, ao.harmonic_features, ao.timbre_features, ao.tempo_features])
mitian@3 476
mitian@3 477 gt_hm_sf_idxs = sf_S.segmentation(gt_hm)
mitian@3 478 gt_tb_sf_idxs = sf_S.segmentation(gt_tb)
mitian@3 479 gt_tp_sf_idxs = sf_S.segmentation(gt_tp)
mitian@3 480 hm_tb_sf_idxs = sf_S.segmentation(hm_tb)
mitian@3 481 hm_tp_sf_idxs = sf_S.segmentation(hm_tp)
mitian@3 482 tb_tp_sf_idxs = sf_S.segmentation(tb_tp)
mitian@3 483 gt_hm_tb_sf_idxs = sf_S.segmentation(gt_hm_tb)
mitian@3 484 gt_hm_tp_sf_idxs = sf_S.segmentation(gt_hm_tp)
mitian@3 485 gt_tb_tp_sf_idxs = sf_S.segmentation(gt_tb_tp)
mitian@3 486 hm_tb_tp_sf_idxs = sf_S.segmentation(hm_tb_tp)
mitian@3 487 gt_hm_tb_tp_sf_idxs = sf_S.segmentation(gt_hm_tb_tp)
mitian@3 488
mitian@3 489 gt_hm_05 = self.pairwiseF(ao.gt, gt_hm_sf_idxs, tolerance=0.5, combine=1.0)
mitian@3 490 gt_tb_05 = self.pairwiseF(ao.gt, gt_tb_sf_idxs, tolerance=0.5, combine=1.0)
mitian@3 491 gt_tp_05 = self.pairwiseF(ao.gt, gt_tp_sf_idxs, tolerance=0.5, combine=1.0)
mitian@3 492 hm_tb_05 = self.pairwiseF(ao.gt, hm_tb_sf_idxs, tolerance=0.5, combine=1.0)
mitian@3 493 hm_tp_05 = self.pairwiseF(ao.gt, hm_tp_sf_idxs, tolerance=0.5, combine=1.0)
mitian@3 494 tb_tp_05 = self.pairwiseF(ao.gt, tb_tp_sf_idxs, tolerance=0.5, combine=1.0)
mitian@3 495 gt_hm_tb_05 = self.pairwiseF(ao.gt, gt_hm_tb_sf_idxs, tolerance=0.5, combine=1.0)
mitian@3 496 gt_hm_tp_05 = self.pairwiseF(ao.gt, gt_hm_tp_sf_idxs, tolerance=0.5, combine=1.0)
mitian@3 497 gt_tb_tp_05 = self.pairwiseF(ao.gt, gt_tb_tp_sf_idxs, tolerance=0.5, combine=1.0)
mitian@3 498 hm_tb_tp_05 = self.pairwiseF(ao.gt, hm_tb_tp_sf_idxs, tolerance=0.5, combine=1.0)
mitian@3 499 gt_hm_tb_tp_05 = self.pairwiseF(ao.gt, gt_hm_tb_tp_sf_idxs, tolerance=0.5, combine=1.0)
mitian@3 500
mitian@3 501 gt_hm_3 = self.pairwiseF(ao.gt, gt_hm_sf_idxs, tolerance=3, combine=1.0)
mitian@3 502 gt_tb_3 = self.pairwiseF(ao.gt, gt_tb_sf_idxs, tolerance=3, combine=1.0)
mitian@3 503 gt_tp_3 = self.pairwiseF(ao.gt, gt_tp_sf_idxs, tolerance=3, combine=1.0)
mitian@3 504 hm_tb_3 = self.pairwiseF(ao.gt, hm_tb_sf_idxs, tolerance=3, combine=1.0)
mitian@3 505 hm_tp_3 = self.pairwiseF(ao.gt, hm_tp_sf_idxs, tolerance=3, combine=1.0)
mitian@3 506 tb_tp_3 = self.pairwiseF(ao.gt, tb_tp_sf_idxs, tolerance=3, combine=1.0)
mitian@3 507 gt_hm_tb_3 = self.pairwiseF(ao.gt, gt_hm_tb_sf_idxs, tolerance=3, combine=1.0)
mitian@3 508 gt_hm_tp_3 = self.pairwiseF(ao.gt, gt_hm_tp_sf_idxs, tolerance=3, combine=1.0)
mitian@3 509 gt_tb_tp_3 = self.pairwiseF(ao.gt, gt_tb_tp_sf_idxs, tolerance=3, combine=1.0)
mitian@3 510 hm_tb_tp_3 = self.pairwiseF(ao.gt, hm_tb_tp_sf_idxs, tolerance=3, combine=1.0)
mitian@3 511 gt_hm_tb_tp_3 = self.pairwiseF(ao.gt, gt_hm_tb_tp_sf_idxs, tolerance=3, combine=1.0)
mitian@3 512
mitian@3 513 self.writeCombinedRes(ao.name, outfile7, gt_hm_05, gt_hm_3, gt_tb_05, gt_tb_3, gt_tp_05, gt_tp_3, hm_tb_05, hm_tb_3, hm_tp_05, hm_tp_3, tb_tp_05, tb_tp_3\
mitian@3 514 gt_hm_tb_05, gt_hm_tb_3, gt_hm_tp_05, gt_hm_tp_3, gt_tb_tp_05, gt_tb_tp_3, hm_tb_tp_05, hm_tb_tp_3, gt_hm_tb_tp_05, gt_hm_tb_tp_3)
mitian@3 515
mitian@3 516 ############################################################################################################################################
mitian@3 517 # Experiment 3: Pruning boundaries detected by individual boundary algorithms.
mitian@3 518
mitian@3 519
mitian@3 520 # if options.BOUNDARY == 'novelty':
mitian@3 521 # gammatone_novelty, smoothed_gammatone_novelty, gammatone_bound_idxs = novelty_S.process(ao.gammatone_ssm, self.kernel_size, peak_picker)
mitian@3 522 # timbre_novelty, smoothed_timbre_novelty, timbre_bound_idxs = novelty_S.process(ao.timbre_ssm, self.kernel_size, peak_picker)
mitian@3 523 # tempo_novelty, smoothed_harmonic_novelty, tempo_bound_idxs = novelty_S.process(ao.tempo_ssm, self.kernel_size, peak_picker)
mitian@3 524 # harmonic_novelty, smoothed_tempo_novelty, harmonic_bound_idxs = novelty_S.process(ao.harmonic_ssm, self.kernel_size, peak_picker)
mitian@3 525 #
mitian@3 526 # if options.BOUNDARY == 'cnmf':
mitian@3 527 # gammatone_cnmf_idxs = cnmf_S.segmentation(ao.gammatone_features, rank=rank, R=R, h=8, niter=300)
mitian@3 528 # timbre_cnmf_idxs = cnmf_S.segmentation(ao.timbre_features, rank=rank, R=R, h=h, niter=300)
mitian@3 529 # tempo_cnmf_idxs = cnmf_S.segmentation(ao.tempo_features, rank=rank, R=R, h=h, niter=300)
mitian@3 530 # harmonic_cnmf_idxs = cnmf_S.segmentation(ao.harmonic_features, rank=rank, R=R, h=h, niter=300)
mitian@3 531 #
mitian@3 532 # if options.BOUNDARY == 'foote':
mitian@3 533 # gammatone_foote_idxs = foote_S.segmentation(ao.gammatone_features, M=M, Mg=Mg, L=L)
mitian@3 534 # timbre_foote_idxs = foote_S.segmentation(ao.timbre_features, M=M, Mg=Mg, L=L)
mitian@3 535 # tempo_foote_idxs = foote_S.segmentation(ao.tempo_features, M=M, Mg=Mg, L=L)
mitian@3 536 # harmonic_foote_idxs = foote_S.segmentation(ao.harmonic_features, M=M, Mg=Mg, L=L)
mitian@3 537 #
mitian@3 538 # if options.BOUNDARY == 'sf':
mitian@3 539 # gammatone_sf_idxs = sf_S.segmentation(ao.gammatone_features)
mitian@3 540 # timbre_sf_idxs = sf_S.segmentation(ao.timbre_features)
mitian@3 541 # tempo_sf_idxs = sf_S.segmentation(ao.tempo_features)
mitian@3 542 # harmonic_sf_idxs = sf_S.segmentation(ao.harmonic_features)
mitian@3 543 #
mitian@3 544 # gammatone_novelty_detection = [0.0] + [ao.ssm_timestamps[int(np.rint(i))] for i in gammatone_novelty_peaks]
mitian@3 545 # timbre_novelty_detection = [0.0] + [ao.ssm_timestamps[int(np.rint(i))] for i in timbre_novelty_peaks]
mitian@3 546 # harmonic_novelty_detection = [0.0] + [ao.ssm_timestamps[int(np.rint(i))] for i in harmonic_novelty_peaks]
mitian@3 547 # tempo_novelty_detection = [0.0] + [ao.ssm_timestamps[int(np.rint(i))] for i in tempo_novelty_peaks]
mitian@3 548 #
mitian@3 549 # gammatone_cnmf_detection = [0.0] + [ao.ssm_timestamps[int(np.rint(i))] for i in gammatone_cnmf_peaks]
mitian@3 550 # timbre_cnmf_detection = [0.0] + [ao.ssm_timestamps[int(np.rint(i))] for i in timbre_cnmf_peaks]
mitian@3 551 # harmonic_cnmf_detection = [0.0] + [ao.ssm_timestamps[int(np.rint(i))] for i in harmonic_cnmf_peaks]
mitian@3 552 # tempo_cnmf_detection = [0.0] + [ao.ssm_timestamps[int(np.rint(i))] for i in tempo_cnmf_peaks]
mitian@3 553 #
mitian@3 554 # gammatone_sf_detection = [0.0] + [ao.ssm_timestamps[int(np.rint(i))] for i in gammatone_sf_peaks]
mitian@3 555 # timbre_sf_detection = [0.0] + [ao.ssm_timestamps[int(np.rint(i))] for i in timbre_sf_peaks]
mitian@3 556 # harmonic_sf_detection = [0.0] + [ao.ssm_timestamps[int(np.rint(i))] for i in harmonic_sf_peaks]
mitian@3 557 # tempo_sf_detection = [0.0] + [ao.ssm_timestamps[int(np.rint(i))] for i in tempo_sf_peaks]
mitian@3 558 #
mitian@3 559 # gammatone_foote_detection = [0.0] + [ao.ssm_timestamps[int(np.rint(i))] for i in gammatone_foote_peaks]
mitian@3 560 # timbre_foote_detection = [0.0] + [ao.ssm_timestamps[int(np.rint(i))] for i in timbre_foote_peaks]
mitian@3 561 # harmonic_foote_detection = [0.0] + [ao.ssm_timestamps[int(np.rint(i))] for i in harmonic_foote_peaks]
mitian@3 562 # tempo_foote_detection = [0.0] + [ao.ssm_timestamps[int(np.rint(i))] for i in tempo_foote_peaks]
mitian@3 563 #
mitian@3 564 # # Experiment 2: Trying combined features using the best boundary retrieval method
mitian@3 565 # ao_featureset = [ao.gammatone_features, ao.harmonic_features, ao.timbre_features, ao.tempo_features]
mitian@3 566 # feature_sel = [int(x) for x in options.FEATURES if x.isdigit()]
mitian@3 567 # fused_featureset = [ao_featureset[i] for i in feature_sel]
mitian@3 568
mitian@3 569 # if options.LABEL == 'fmc2d':
mitian@3 570 # gammatone_fmc2d_labels = fmc2d_S.compute_similarity(gammatone_bound_idxs, xmeans=True, N=N)
mitian@3 571 # timbre_fmc2d_labels = fmc2d_S.compute_similarity(timbre_bound_idxs, xmeans=True, N=N)
mitian@3 572 # tempo_fmc2d_labels = fmc2d_S.compute_similarity(tempo_bound_idxs, xmeans=True, N=N)
mitian@3 573 # harmonic_fmc2d_labels = fmc2d_S.compute_similarity(harmonic_bound_idxs, xmeans=True, N=N)
mitian@3 574 #
mitian@3 575 # if options.LABEL == 'cnmf':
mitian@3 576 # gammatone_cnmf_labels = cnmf_S.compute_labels(gammatone_bound_idxs, est_bound_idxs, nFrames)
mitian@3 577 # timbre_cnmf_labels = cnmf_S.compute_labels(timbre_bound_idxs, est_bound_idxs, nFrames)
mitian@3 578 # tempo_cnmf_labels = cnmf_S.compute_labels(tempo_bound_idxs, est_bound_idxs, nFrames)
mitian@3 579 # harmonic_cnmf_labels = cnmf_S.compute_labels(harmonic_bound_idxs, est_bound_idxs, nFrames)
mitian@3 580 #
mitian@3 581 #
mitian@3 582
mi@0 583
mi@0 584
mi@0 585 def main():
mi@0 586
mi@0 587 segmenter = SSMseg()
mi@0 588 segmenter.process()
mi@0 589
mi@0 590
mi@0 591 if __name__ == '__main__':
mi@0 592 main()
mi@0 593