mi@0
|
1 """
|
mi@0
|
2 Useful functions that are quite common for music segmentation
|
mi@0
|
3 """
|
mi@0
|
4 '''
|
mi@0
|
5 Modified and more funcs added.
|
mi@0
|
6 Mi Tian, April 2015.
|
mi@0
|
7 '''
|
mi@0
|
8
|
mi@0
|
9 __author__ = "Oriol Nieto"
|
mi@0
|
10 __copyright__ = "Copyright 2014, Music and Audio Research Lab (MARL)"
|
mi@0
|
11 __license__ = "GPL"
|
mi@0
|
12 __version__ = "1.0"
|
mi@0
|
13 __email__ = "oriol@nyu.edu"
|
mi@0
|
14
|
mi@0
|
15 import copy
|
mi@0
|
16 import numpy as np
|
mi@0
|
17 import os
|
mi@0
|
18 import scipy
|
mi@0
|
19 from scipy.spatial import distance
|
mi@0
|
20 from scipy.ndimage import filters, zoom
|
mi@0
|
21 from scipy import signal
|
mi@0
|
22 import pylab as plt
|
mi@0
|
23 from scipy.spatial.distance import squareform, pdist
|
mi@0
|
24
|
mi@0
|
25
|
mi@0
|
26 def lognormalize_chroma(C):
|
mi@0
|
27 """Log-normalizes chroma such that each vector is between -80 to 0."""
|
mi@0
|
28 C += np.abs(C.min()) + 0.1
|
mi@0
|
29 C = C/C.max(axis=0)
|
mi@0
|
30 C = 80 * np.log10(C) # Normalize from -80 to 0
|
mi@0
|
31 return C
|
mi@0
|
32
|
mi@0
|
33
|
mi@0
|
34 def normalize_matrix(X):
|
mi@0
|
35 """Nomalizes a matrix such that it's maximum value is 1 and minimum is 0."""
|
mi@0
|
36 X += np.abs(X.min())
|
mi@0
|
37 X /= X.max()
|
mi@0
|
38 return X
|
mi@0
|
39
|
mi@0
|
40
|
mi@0
|
41 def ensure_dir(directory):
|
mi@0
|
42 """Makes sure that the given directory exists."""
|
mi@0
|
43 if not os.path.exists(directory):
|
mi@0
|
44 os.makedirs(directory)
|
mi@0
|
45
|
mi@0
|
46
|
mi@0
|
47 def median_filter(X, M=8):
|
mi@0
|
48 """Median filter along the first axis of the feature matrix X."""
|
mi@0
|
49 for i in xrange(X.shape[1]):
|
mi@0
|
50 X[:, i] = filters.median_filter(X[:, i], size=M)
|
mi@0
|
51 return X
|
mi@0
|
52
|
mi@0
|
53
|
mi@0
|
54 def compute_gaussian_krnl(M):
|
mi@0
|
55 """Creates a gaussian kernel following Foote's paper."""
|
mi@0
|
56 g = signal.gaussian(M, M / 3., sym=True)
|
mi@0
|
57 G = np.dot(g.reshape(-1, 1), g.reshape(1, -1))
|
mi@0
|
58 G[M / 2:, :M / 2] = -G[M / 2:, :M / 2]
|
mi@0
|
59 G[:M / 2, M / 2:] = -G[:M / 2, M / 2:]
|
mi@0
|
60 return G
|
mi@0
|
61
|
mi@0
|
62
|
mi@0
|
63 def compute_ssm(X, metric="seuclidean"):
|
mi@0
|
64 """Computes the self-similarity matrix of X."""
|
mi@0
|
65 D = distance.pdist(X, metric=metric)
|
mi@0
|
66 D = distance.squareform(D)
|
mi@0
|
67 D /= D.max()
|
mi@0
|
68 return 1 - D
|
mi@0
|
69
|
mi@0
|
70
|
mi@0
|
71 def compute_nc(X, G):
|
mi@0
|
72 """Computes the novelty curve from the self-similarity matrix X and
|
mi@0
|
73 the gaussian kernel G."""
|
mi@0
|
74 N = X.shape[0]
|
mi@0
|
75 M = G.shape[0]
|
mi@0
|
76 nc = np.zeros(N)
|
mi@0
|
77
|
mi@0
|
78 for i in xrange(M / 2, N - M / 2 + 1):
|
mi@0
|
79 nc[i] = np.sum(X[i - M / 2:i + M / 2, i - M / 2:i + M / 2] * G)
|
mi@0
|
80
|
mi@0
|
81 # Normalize
|
mi@0
|
82 nc += nc.min()
|
mi@0
|
83 nc /= nc.max()
|
mi@0
|
84 return nc
|
mi@0
|
85
|
mi@0
|
86
|
mi@0
|
87 def resample_mx(X, incolpos, outcolpos):
|
mi@0
|
88 """
|
mi@0
|
89 Method from Librosa
|
mi@0
|
90 Y = resample_mx(X, incolpos, outcolpos)
|
mi@0
|
91 X is taken as a set of columns, each starting at 'time'
|
mi@0
|
92 colpos, and continuing until the start of the next column.
|
mi@0
|
93 Y is a similar matrix, with time boundaries defined by
|
mi@0
|
94 outcolpos. Each column of Y is a duration-weighted average of
|
mi@0
|
95 the overlapping columns of X.
|
mi@0
|
96 2010-04-14 Dan Ellis dpwe@ee.columbia.edu based on samplemx/beatavg
|
mi@0
|
97 -> python: TBM, 2011-11-05, TESTED
|
mi@0
|
98 """
|
mi@0
|
99 noutcols = len(outcolpos)
|
mi@0
|
100 Y = np.zeros((X.shape[0], noutcols))
|
mi@0
|
101 # assign 'end times' to final columns
|
mi@0
|
102 if outcolpos.max() > incolpos.max():
|
mi@0
|
103 incolpos = np.concatenate([incolpos,[outcolpos.max()]])
|
mi@0
|
104 X = np.concatenate([X, X[:,-1].reshape(X.shape[0],1)], axis=1)
|
mi@0
|
105 outcolpos = np.concatenate([outcolpos, [outcolpos[-1]]])
|
mi@0
|
106 # durations (default weights) of input columns)
|
mi@0
|
107 incoldurs = np.concatenate([np.diff(incolpos), [1]])
|
mi@0
|
108
|
mi@0
|
109 for c in range(noutcols):
|
mi@0
|
110 firstincol = np.where(incolpos <= outcolpos[c])[0][-1]
|
mi@0
|
111 firstincolnext = np.where(incolpos < outcolpos[c+1])[0][-1]
|
mi@0
|
112 lastincol = max(firstincol,firstincolnext)
|
mi@0
|
113 # default weights
|
mi@0
|
114 wts = copy.deepcopy(incoldurs[firstincol:lastincol+1])
|
mi@0
|
115 # now fix up by partial overlap at ends
|
mi@0
|
116 if len(wts) > 1:
|
mi@0
|
117 wts[0] = wts[0] - (outcolpos[c] - incolpos[firstincol])
|
mi@0
|
118 wts[-1] = wts[-1] - (incolpos[lastincol+1] - outcolpos[c+1])
|
mi@0
|
119 wts = wts * 1. /sum(wts)
|
mi@0
|
120 Y[:,c] = np.dot(X[:,firstincol:lastincol+1], wts)
|
mi@0
|
121 # done
|
mi@0
|
122 return Y
|
mi@0
|
123
|
mi@0
|
124
|
mi@0
|
125 def chroma_to_tonnetz(C):
|
mi@0
|
126 """Transforms chromagram to Tonnetz (Harte, Sandler, 2006)."""
|
mi@0
|
127 N = C.shape[0]
|
mi@0
|
128 T = np.zeros((N, 6))
|
mi@0
|
129
|
mi@0
|
130 r1 = 1 # Fifths
|
mi@0
|
131 r2 = 1 # Minor
|
mi@0
|
132 r3 = 0.5 # Major
|
mi@0
|
133
|
mi@0
|
134 # Generate Transformation matrix
|
mi@0
|
135 phi = np.zeros((6, 12))
|
mi@0
|
136 for i in range(6):
|
mi@0
|
137 for j in range(12):
|
mi@0
|
138 if i % 2 == 0:
|
mi@0
|
139 fun = np.sin
|
mi@0
|
140 else:
|
mi@0
|
141 fun = np.cos
|
mi@0
|
142
|
mi@0
|
143 if i < 2:
|
mi@0
|
144 phi[i, j] = r1 * fun(j * 7 * np.pi / 6.)
|
mi@0
|
145 elif i >= 2 and i < 4:
|
mi@0
|
146 phi[i, j] = r2 * fun(j * 3 * np.pi / 2.)
|
mi@0
|
147 else:
|
mi@0
|
148 phi[i, j] = r3 * fun(j * 2 * np.pi / 3.)
|
mi@0
|
149
|
mi@0
|
150 # Do the transform to tonnetz
|
mi@0
|
151 for i in range(N):
|
mi@0
|
152 for d in range(6):
|
mi@0
|
153 denom = float(C[i, :].sum())
|
mi@0
|
154 if denom == 0:
|
mi@0
|
155 T[i, d] = 0
|
mi@0
|
156 else:
|
mi@0
|
157 T[i, d] = 1 / denom * (phi[d, :] * C[i, :]).sum()
|
mi@0
|
158
|
mi@0
|
159 return T
|
mi@0
|
160
|
mi@0
|
161
|
mi@0
|
162 def most_frequent(x):
|
mi@0
|
163 """Returns the most frequent value in x."""
|
mi@0
|
164 return np.argmax(np.bincount(x))
|
mi@0
|
165
|
mi@0
|
166
|
mi@0
|
167 def pick_peaks(nc, L=16, plot=False):
|
mi@0
|
168 """Obtain peaks from a novelty curve using an adaptive threshold."""
|
mi@0
|
169 offset = nc.mean() / 3
|
mi@0
|
170 th = filters.median_filter(nc, size=L) + offset
|
mi@0
|
171 peaks = []
|
mi@0
|
172 for i in xrange(1, nc.shape[0] - 1):
|
mi@0
|
173 # is it a peak?
|
mi@0
|
174 if nc[i - 1] < nc[i] and nc[i] > nc[i + 1]:
|
mi@0
|
175 # is it above the threshold?
|
mi@0
|
176 if nc[i] > th[i]:
|
mi@0
|
177 peaks.append(i)
|
mi@0
|
178 if plot:
|
mi@0
|
179 plt.plot(nc)
|
mi@0
|
180 plt.plot(th)
|
mi@0
|
181 for peak in peaks:
|
mi@0
|
182 plt.axvline(peak, color="m")
|
mi@0
|
183 plt.show()
|
mi@0
|
184 return peaks
|
mi@0
|
185
|
mi@0
|
186
|
mi@0
|
187 def recurrence_matrix(data, k=None, width=1, metric='sqeuclidean', sym=False):
|
mi@0
|
188 '''
|
mi@0
|
189 Note: Copied from librosa
|
mi@0
|
190
|
mi@0
|
191 Compute the binary recurrence matrix from a time-series.
|
mi@0
|
192
|
mi@0
|
193 ``rec[i,j] == True`` <=> (``data[:,i]``, ``data[:,j]``) are
|
mi@0
|
194 k-nearest-neighbors and ``|i-j| >= width``
|
mi@0
|
195
|
mi@0
|
196 :usage:
|
mi@0
|
197 >>> mfcc = librosa.feature.mfcc(y=y, sr=sr)
|
mi@0
|
198 >>> R = librosa.segment.recurrence_matrix(mfcc)
|
mi@0
|
199
|
mi@0
|
200 >>> # Or fix the number of nearest neighbors to 5
|
mi@0
|
201 >>> R = librosa.segment.recurrence_matrix(mfcc, k=5)
|
mi@0
|
202
|
mi@0
|
203 >>> # Suppress neighbors within +- 7 samples
|
mi@0
|
204 >>> R = librosa.segment.recurrence_matrix(mfcc, width=7)
|
mi@0
|
205
|
mi@0
|
206 >>> # Use cosine similarity instead of Euclidean distance
|
mi@0
|
207 >>> R = librosa.segment.recurrence_matrix(mfcc, metric='cosine')
|
mi@0
|
208
|
mi@0
|
209 >>> # Require mutual nearest neighbors
|
mi@0
|
210 >>> R = librosa.segment.recurrence_matrix(mfcc, sym=True)
|
mi@0
|
211
|
mi@0
|
212 :parameters:
|
mi@0
|
213 - data : np.ndarray
|
mi@0
|
214 feature matrix (d-by-t)
|
mi@0
|
215
|
mi@0
|
216 - k : int > 0 or None
|
mi@0
|
217 the number of nearest-neighbors for each sample
|
mi@0
|
218
|
mi@0
|
219 Default: ``k = 2 * ceil(sqrt(t - 2 * width + 1))``,
|
mi@0
|
220 or ``k = 2`` if ``t <= 2 * width + 1``
|
mi@0
|
221
|
mi@0
|
222 - width : int > 0
|
mi@0
|
223 only link neighbors ``(data[:, i], data[:, j])``
|
mi@0
|
224 if ``|i-j| >= width``
|
mi@0
|
225
|
mi@0
|
226 - metric : str
|
mi@0
|
227 Distance metric to use for nearest-neighbor calculation.
|
mi@0
|
228
|
mi@0
|
229 See ``scipy.spatial.distance.cdist()`` for details.
|
mi@0
|
230
|
mi@0
|
231 - sym : bool
|
mi@0
|
232 set ``sym=True`` to only link mutual nearest-neighbors
|
mi@0
|
233
|
mi@0
|
234 :returns:
|
mi@0
|
235 - rec : np.ndarray, shape=(t,t), dtype=bool
|
mi@0
|
236 Binary recurrence matrix
|
mi@0
|
237 '''
|
mi@0
|
238
|
mi@0
|
239 t = data.shape[1]
|
mi@0
|
240
|
mi@0
|
241 if k is None:
|
mi@0
|
242 if t > 2 * width + 1:
|
mi@0
|
243 k = 2 * np.ceil(np.sqrt(t - 2 * width + 1))
|
mi@0
|
244 else:
|
mi@0
|
245 k = 2
|
mi@0
|
246
|
mi@0
|
247 k = int(k)
|
mi@0
|
248
|
mi@0
|
249 def _band_infinite():
|
mi@0
|
250 '''Suppress the diagonal+- of a distance matrix'''
|
mi@0
|
251
|
mi@0
|
252 band = np.empty((t, t))
|
mi@0
|
253 band.fill(np.inf)
|
mi@0
|
254 band[np.triu_indices_from(band, width)] = 0
|
mi@0
|
255 band[np.tril_indices_from(band, -width)] = 0
|
mi@0
|
256
|
mi@0
|
257 return band
|
mi@0
|
258
|
mi@0
|
259 # Build the distance matrix
|
mi@0
|
260 D = scipy.spatial.distance.cdist(data.T, data.T, metric=metric)
|
mi@0
|
261
|
mi@0
|
262 # Max out the diagonal band
|
mi@0
|
263 D = D + _band_infinite()
|
mi@0
|
264
|
mi@0
|
265 # build the recurrence plot
|
mi@0
|
266 rec = np.zeros((t, t), dtype=bool)
|
mi@0
|
267
|
mi@0
|
268 # get the k nearest neighbors for each point
|
mi@0
|
269 for i in range(t):
|
mi@0
|
270 for j in np.argsort(D[i])[:k]:
|
mi@0
|
271 rec[i, j] = True
|
mi@0
|
272
|
mi@0
|
273 # symmetrize
|
mi@0
|
274 if sym:
|
mi@0
|
275 rec = rec * rec.T
|
mi@0
|
276
|
mi@0
|
277 return rec
|
mi@0
|
278
|
mi@0
|
279
|
mi@0
|
280 def getMean(feature, winlen, stepsize):
|
mi@0
|
281 means = []
|
mi@0
|
282 steps = int((feature.shape[0] - winlen + stepsize) / stepsize)
|
mi@0
|
283 for i in xrange(steps):
|
mi@0
|
284 means.append(np.mean(feature[i*stepsize:(i*stepsize+winlen), :], axis=0))
|
mi@0
|
285 return np.array(means)
|
mi@0
|
286
|
mi@0
|
287
|
mi@0
|
288 def getStd(feature, winlen, stepsize):
|
mi@0
|
289 std = []
|
mi@0
|
290 steps = int((feature.shape[0] - winlen + stepsize) / stepsize)
|
mi@0
|
291 for i in xrange(steps):
|
mi@0
|
292 std.append(np.std(feature[i*stepsize:(i*stepsize+winlen), :], axis=0))
|
mi@0
|
293 return np.array(std)
|
mi@0
|
294
|
mi@0
|
295
|
mi@0
|
296 def getDelta(feature):
|
mi@0
|
297 delta_feature = np.vstack((np.zeros((1, feature.shape[1])), np.diff(feature, axis=0)))
|
mi@0
|
298 return delta_feature
|
mi@0
|
299
|
mi@0
|
300
|
mi@0
|
301 def getSSM(feature_array, metric='cosine', norm='simple', reduce=False):
|
mi@0
|
302 '''Compute SSM given input feature array.
|
mi@0
|
303 args: norm: ['simple', 'remove_noise']
|
mi@0
|
304 '''
|
mi@0
|
305 dm = pairwise_distances(feature_array, metric=metric)
|
mi@0
|
306 dm = np.nan_to_num(dm)
|
mi@0
|
307 if norm == 'simple':
|
mi@0
|
308 ssm = 1 - (dm - np.min(dm)) / (np.max(dm) - np.min(dm))
|
mi@0
|
309 if reduce:
|
mi@0
|
310 ssm = reduceSSM(ssm)
|
mi@0
|
311 return ssm
|
mi@0
|
312
|
mi@0
|
313
|
mi@0
|
314 def reduceSSM(ssm, maxfilter_size = 2, remove_size=50):
|
mi@0
|
315 reduced_ssm = ssm
|
mi@0
|
316 reduced_ssm[reduced_ssm<0.75] = 0
|
mi@0
|
317 # # reduced_ssm = maximum_filter(reduced_ssm,size=maxfilter_size)
|
mi@0
|
318 # # reduced_ssm = morphology.remove_small_objects(reduced_ssm.astype(bool), min_size=remove_size)
|
mi@0
|
319 local_otsu = otsu(reduced_ssm, disk(5))
|
mi@0
|
320 local_otsu = (local_otsu.astype(float) - np.min(local_otsu)) / (np.max(local_otsu) - np.min(local_otsu))
|
mi@0
|
321 reduced_ssm = reduced_ssm - 0.6*local_otsu
|
mi@0
|
322 return reduced_ssm
|
mi@0
|
323
|
mi@0
|
324
|
mi@0
|
325 def upSample(feature_array, step):
|
mi@0
|
326 '''Resample downsized tempogram features, tempoWindo should be in accordance with input features'''
|
mi@0
|
327 # print feature_array.shape
|
mi@0
|
328 sampleRate = 44100
|
mi@0
|
329 stepSize = 1024.0
|
mi@0
|
330 # step = np.ceil(sampleRate/stepSize/5.0)
|
mi@0
|
331 feature_array = zoom(feature_array, (step,1))
|
mi@0
|
332 # print 'resampled', feature_array.shape
|
mi@0
|
333 return feature_array
|
mi@0
|
334
|
mi@0
|
335
|
mi@0
|
336 def normaliseFeature(feature_array):
|
mi@0
|
337 '''Normalise features column wisely.'''
|
mi@0
|
338 feature_array[np.isnan(feature_array)] = 0.0
|
mi@0
|
339 feature_array[np.isinf(feature_array)] = 0.0
|
mi@0
|
340 feature_array = (feature_array - np.min(feature_array, axis=-1)[:,np.newaxis]) / (np.max(feature_array, axis=-1) - np.min(feature_array, axis=-1))[:,np.newaxis]
|
mi@0
|
341 feature_array[np.isnan(feature_array)] = 0.0
|
mi@0
|
342 feature_array[np.isinf(feature_array)] = 0.0
|
mi@0
|
343
|
mi@0
|
344 return feature_array
|
mi@0
|
345
|
mi@0
|
346
|
mi@0
|
347 def verifyPeaks(peak_canditates, dev_list):
|
mi@0
|
348 '''Verify peaks from the 1st round detection by applying adaptive thresholding to the deviation list.'''
|
mi@0
|
349
|
mi@0
|
350 final_peaks = copy(peak_canditates)
|
mi@0
|
351 dev_list = np.array([np.mean(x) for x in dev_list]) # get average of devs of different features
|
mi@0
|
352 med_dev = median_filter(dev_list, size=5)
|
mi@0
|
353 # print dev_list, np.min(dev_list), np.median(dev_list), np.mean(dev_list), np.std(dev_list)
|
mi@0
|
354 dev = dev_list - np.percentile(dev_list, 50)
|
mi@0
|
355 # print dev
|
mi@0
|
356 for i, x in enumerate(dev):
|
mi@0
|
357 if x < 0:
|
mi@0
|
358 final_peaks.remove(peak_canditates[i])
|
mi@0
|
359 return final_peaks
|
mi@0
|
360
|
mi@0
|
361
|
mi@0
|
362 def envelopeFollower(xc, AT, RT, prevG, scaler=1):
|
mi@0
|
363 '''Follows the amplitude envelope of input signal xc.'''
|
mi@0
|
364
|
mi@0
|
365 g = np.zeros_like(xc)
|
mi@0
|
366 length = len(xc)
|
mi@0
|
367
|
mi@0
|
368 for i in xrange(length):
|
mi@0
|
369 xSquared = xc[i] ** 2
|
mi@0
|
370 # if input is less than the previous output use attack, otherwise use the release
|
mi@0
|
371 if xSquared < prevG:
|
mi@0
|
372 coeff = AT
|
mi@0
|
373 else:
|
mi@0
|
374 coeff = RT
|
mi@0
|
375 g[i] = (xSquared - prevG)*coeff + prevG
|
mi@0
|
376 g[i] *= scaler
|
mi@0
|
377 prevG = g[i]
|
mi@0
|
378
|
mi@0
|
379 return g
|
mi@0
|
380
|
mi@0
|
381
|
mi@0
|
382 def getEnvPeaks(sig, sig_env, size=1):
|
mi@0
|
383 '''Finds peaks in the signal envelope.
|
mi@0
|
384 args: sig (1d array): orignal input signal
|
mi@0
|
385 sig_env (list): position of the signal envelope.
|
mi@0
|
386 size: ranges to locate local maxima in the envelope as peaks.
|
mi@0
|
387 '''
|
mi@0
|
388 envelope = sig[sig_env]
|
mi@0
|
389 peaks = []
|
mi@0
|
390 if len(envelope) > 1 and envelope[0] > envelope[1]:
|
mi@0
|
391 peaks.append(sig_env[0])
|
mi@0
|
392 for i in xrange(size, len(envelope)-size-1):
|
mi@0
|
393 if envelope[i] > np.max(envelope[i-size:i]) and envelope[i] > np.max(envelope[i+1:i+size+1]):
|
mi@0
|
394 peaks.append(sig_env[i])
|
mi@0
|
395 return peaks |