annotate cnmf.py @ 0:26838b1f560f

initial commit of a segmenter project
author mi tian
date Thu, 02 Apr 2015 18:09:27 +0100
parents
children c11ea9e0357f
rev   line source
mi@0 1 """
mi@0 2 C-NMF method for segmentation, modified from here:
mi@0 3
mi@0 4 Nieto, O., Jehan, T., Convex Non-negative Matrix Factorization For Automatic
mi@0 5 Music Structure Identification. Proc. of the 38th IEEE International Conference
mi@0 6 on Acoustics, Speech, and Signal Processing (ICASSP). Vancouver, Canada, 2013.
mi@0 7 """
mi@0 8
mi@0 9 __author__ = "Oriol Nieto"
mi@0 10 __copyright__ = "Copyright 2014, Music and Audio Research Lab (MARL)"
mi@0 11 __license__ = "GPL"
mi@0 12 __version__ = "1.0"
mi@0 13 __email__ = "oriol@nyu.edu"
mi@0 14
mi@0 15 import numpy as np
mi@0 16 import pymf
mi@0 17
mi@0 18 # Local stuff
mi@0 19 from utils import SegUtil
mi@0 20
mi@0 21
mi@0 22 def cnmf(S, rank, niter=500):
mi@0 23 """(Convex) Non-Negative Matrix Factorization.
mi@0 24
mi@0 25 Parameters
mi@0 26 ----------
mi@0 27 S: np.array(p, N)
mi@0 28 Features matrix. p row features and N column observations.
mi@0 29 rank: int
mi@0 30 Rank of decomposition
mi@0 31 niter: int
mi@0 32 Number of iterations to be used
mi@0 33
mi@0 34 Returns
mi@0 35 -------
mi@0 36 F: np.array
mi@0 37 Cluster matrix (decomposed matrix)
mi@0 38 G: np.array
mi@0 39 Activation matrix (decomposed matrix)
mi@0 40 (s.t. S ~= F * G)
mi@0 41 """
mi@0 42 nmf_mdl = pymf.CNMF(S, num_bases=rank)
mi@0 43 nmf_mdl.factorize(niter=niter)
mi@0 44 F = np.asarray(nmf_mdl.W)
mi@0 45 G = np.asarray(nmf_mdl.H)
mi@0 46 return F, G
mi@0 47
mi@0 48
mi@0 49 def most_frequent(x):
mi@0 50 """Returns the most frequent value in x."""
mi@0 51 return np.argmax(np.bincount(x))
mi@0 52
mi@0 53
mi@0 54 def compute_labels(X, rank, R, bound_idxs, niter=300):
mi@0 55 """Computes the labels using the bounds."""
mi@0 56
mi@0 57 X = X.T
mi@0 58 try:
mi@0 59 F, G = cnmf(X, rank, niter=niter)
mi@0 60 except:
mi@0 61 return [1]
mi@0 62
mi@0 63 label_frames = filter_activation_matrix(G.T, R)
mi@0 64 label_frames = np.asarray(label_frames, dtype=int)
mi@0 65
mi@0 66 # Get labels from the label frames
mi@0 67 labels = []
mi@0 68 bound_inters = zip(bound_idxs[:-1], bound_idxs[1:])
mi@0 69 for bound_inter in bound_inters:
mi@0 70 if bound_inter[1] - bound_inter[0] <= 0:
mi@0 71 labels.append(np.max(label_frames) + 1)
mi@0 72 else:
mi@0 73 labels.append(most_frequent(
mi@0 74 label_frames[bound_inter[0]:bound_inter[1]]))
mi@0 75
mi@0 76 return labels
mi@0 77
mi@0 78
mi@0 79 def filter_activation_matrix(G, R):
mi@0 80 """Filters the activation matrix G, and returns a flattened copy."""
mi@0 81 idx = np.argmax(G, axis=1)
mi@0 82 max_idx = np.arange(G.shape[0])
mi@0 83 max_idx = (max_idx, idx.flatten())
mi@0 84 G[:, :] = 0
mi@0 85 G[max_idx] = idx + 1
mi@0 86 G = np.sum(G, axis=1)
mi@0 87 G = utils.median_filter(G[:, np.newaxis], R)
mi@0 88 return G.flatten()
mi@0 89
mi@0 90
mi@0 91 def segmentation(X, rank, R, h, niter=300):
mi@0 92 """
mi@0 93 Gets the segmentation (boundaries and labels) from the factorization
mi@0 94 matrices.
mi@0 95
mi@0 96 Parameters
mi@0 97 ----------
mi@0 98 X: np.array()
mi@0 99 Features matrix (e.g. chromagram)
mi@0 100 rank: int
mi@0 101 Rank of decomposition
mi@0 102 R: int
mi@0 103 Size of the median filter for activation matrix
mi@0 104 niter: int
mi@0 105 Number of iterations for k-means
mi@0 106 bound_idxs : list
mi@0 107 Use previously found boundaries (None to detect them)
mi@0 108
mi@0 109 Returns
mi@0 110 -------
mi@0 111 bounds_idx: np.array
mi@0 112 Bound indeces found
mi@0 113 labels: np.array
mi@0 114 Indeces of the labels representing the similarity between segments.
mi@0 115 """
mi@0 116
mi@0 117 # Filter
mi@0 118 X = utils.median_filter(X, M=h)
mi@0 119 X = X.T
mi@0 120
mi@0 121 # Find non filtered boundaries
mi@0 122 bound_idxs = None
mi@0 123 while True:
mi@0 124 if bound_idxs is None:
mi@0 125 try:
mi@0 126 F, G = cnmf(X, rank, niter=niter)
mi@0 127 except:
mi@0 128 return np.empty(0), [1]
mi@0 129
mi@0 130 # Filter G
mi@0 131 G = filter_activation_matrix(G.T, R)
mi@0 132 if bound_idxs is None:
mi@0 133 bound_idxs = np.where(np.diff(G) != 0)[0] + 1
mi@0 134
mi@0 135 if len(np.unique(bound_idxs)) <= 2:
mi@0 136 rank += 1
mi@0 137 bound_idxs = None
mi@0 138 else:
mi@0 139 break
mi@0 140
mi@0 141 return bound_idxs