c@92
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
c@92
|
2
|
c@92
|
3 /*
|
c@92
|
4 QM Vamp Plugin Set
|
c@92
|
5
|
c@92
|
6 Centre for Digital Music, Queen Mary, University of London.
|
c@92
|
7 All rights reserved.
|
c@92
|
8 */
|
c@92
|
9
|
c@92
|
10 #include "AdaptiveSpectrogram.h"
|
c@92
|
11
|
c@92
|
12 #include <cstdlib>
|
c@92
|
13 #include <cstring>
|
c@114
|
14 #include <cfloat>
|
c@92
|
15
|
c@92
|
16 #include <iostream>
|
c@92
|
17
|
c@92
|
18 #include <dsp/transforms/FFT.h>
|
c@92
|
19
|
c@92
|
20 using std::string;
|
c@92
|
21 using std::vector;
|
c@92
|
22 using std::cerr;
|
c@92
|
23 using std::endl;
|
c@92
|
24
|
c@92
|
25 using Vamp::RealTime;
|
c@92
|
26
|
c@99
|
27 //#define DEBUG_VERBOSE 1
|
c@99
|
28
|
c@92
|
29 AdaptiveSpectrogram::AdaptiveSpectrogram(float inputSampleRate) :
|
c@92
|
30 Plugin(inputSampleRate),
|
c@104
|
31 m_w(8),
|
c@114
|
32 m_n(2),
|
c@114
|
33 m_coarse(false),
|
c@109
|
34 m_threaded(true),
|
c@109
|
35 m_threadsInUse(false)
|
c@92
|
36 {
|
c@92
|
37 }
|
c@92
|
38
|
c@92
|
39 AdaptiveSpectrogram::~AdaptiveSpectrogram()
|
c@92
|
40 {
|
c@104
|
41 for (int i = 0; i < m_cutThreads.size(); ++i) {
|
c@104
|
42 delete m_cutThreads[i];
|
c@104
|
43 }
|
c@104
|
44 m_cutThreads.clear();
|
c@105
|
45
|
c@110
|
46 for (FFTMap::iterator i = m_fftThreads.begin();
|
c@110
|
47 i != m_fftThreads.end(); ++i) {
|
c@106
|
48 delete i->second;
|
c@105
|
49 }
|
c@105
|
50 m_fftThreads.clear();
|
c@92
|
51 }
|
c@92
|
52
|
c@92
|
53 string
|
c@92
|
54 AdaptiveSpectrogram::getIdentifier() const
|
c@92
|
55 {
|
c@93
|
56 return "qm-adaptivespectrogram";
|
c@92
|
57 }
|
c@92
|
58
|
c@92
|
59 string
|
c@92
|
60 AdaptiveSpectrogram::getName() const
|
c@92
|
61 {
|
c@92
|
62 return "Adaptive Spectrogram";
|
c@92
|
63 }
|
c@92
|
64
|
c@92
|
65 string
|
c@92
|
66 AdaptiveSpectrogram::getDescription() const
|
c@92
|
67 {
|
c@92
|
68 return "Produce an adaptive spectrogram by adaptive selection from spectrograms at multiple resolutions";
|
c@92
|
69 }
|
c@92
|
70
|
c@92
|
71 string
|
c@92
|
72 AdaptiveSpectrogram::getMaker() const
|
c@92
|
73 {
|
c@92
|
74 return "Queen Mary, University of London";
|
c@92
|
75 }
|
c@92
|
76
|
c@92
|
77 int
|
c@92
|
78 AdaptiveSpectrogram::getPluginVersion() const
|
c@92
|
79 {
|
c@92
|
80 return 1;
|
c@92
|
81 }
|
c@92
|
82
|
c@92
|
83 string
|
c@92
|
84 AdaptiveSpectrogram::getCopyright() const
|
c@92
|
85 {
|
c@92
|
86 return "Plugin by Wen Xue and Chris Cannam. Copyright (c) 2009 Wen Xue and QMUL - All Rights Reserved";
|
c@92
|
87 }
|
c@92
|
88
|
c@92
|
89 size_t
|
c@92
|
90 AdaptiveSpectrogram::getPreferredStepSize() const
|
c@92
|
91 {
|
c@92
|
92 return ((2 << m_w) << m_n) / 2;
|
c@92
|
93 }
|
c@92
|
94
|
c@92
|
95 size_t
|
c@92
|
96 AdaptiveSpectrogram::getPreferredBlockSize() const
|
c@92
|
97 {
|
c@92
|
98 return (2 << m_w) << m_n;
|
c@92
|
99 }
|
c@92
|
100
|
c@92
|
101 bool
|
c@92
|
102 AdaptiveSpectrogram::initialise(size_t channels, size_t stepSize, size_t blockSize)
|
c@92
|
103 {
|
c@92
|
104 if (channels < getMinChannelCount() ||
|
c@92
|
105 channels > getMaxChannelCount()) return false;
|
c@92
|
106
|
c@92
|
107 return true;
|
c@92
|
108 }
|
c@92
|
109
|
c@92
|
110 void
|
c@92
|
111 AdaptiveSpectrogram::reset()
|
c@92
|
112 {
|
c@92
|
113
|
c@92
|
114 }
|
c@92
|
115
|
c@92
|
116 AdaptiveSpectrogram::ParameterList
|
c@92
|
117 AdaptiveSpectrogram::getParameterDescriptors() const
|
c@92
|
118 {
|
c@92
|
119 ParameterList list;
|
c@92
|
120
|
c@92
|
121 ParameterDescriptor desc;
|
c@92
|
122 desc.identifier = "n";
|
c@92
|
123 desc.name = "Number of resolutions";
|
c@114
|
124 desc.description = "Number of consecutive powers of two in the range to be used as spectrogram resolutions, starting with the minimum resolution specified";
|
c@92
|
125 desc.unit = "";
|
c@114
|
126 desc.minValue = 2;
|
c@92
|
127 desc.maxValue = 10;
|
c@114
|
128 desc.defaultValue = 3;
|
c@92
|
129 desc.isQuantized = true;
|
c@92
|
130 desc.quantizeStep = 1;
|
c@92
|
131 list.push_back(desc);
|
c@92
|
132
|
c@92
|
133 ParameterDescriptor desc2;
|
c@92
|
134 desc2.identifier = "w";
|
c@92
|
135 desc2.name = "Smallest resolution";
|
c@92
|
136 desc2.description = "Smallest of the consecutive powers of two to use as spectrogram resolutions";
|
c@92
|
137 desc2.unit = "";
|
c@92
|
138 desc2.minValue = 1;
|
c@92
|
139 desc2.maxValue = 14;
|
c@104
|
140 desc2.defaultValue = 9;
|
c@92
|
141 desc2.isQuantized = true;
|
c@92
|
142 desc2.quantizeStep = 1;
|
c@92
|
143 // I am so lazy
|
c@92
|
144 desc2.valueNames.push_back("2");
|
c@92
|
145 desc2.valueNames.push_back("4");
|
c@92
|
146 desc2.valueNames.push_back("8");
|
c@92
|
147 desc2.valueNames.push_back("16");
|
c@92
|
148 desc2.valueNames.push_back("32");
|
c@92
|
149 desc2.valueNames.push_back("64");
|
c@92
|
150 desc2.valueNames.push_back("128");
|
c@92
|
151 desc2.valueNames.push_back("256");
|
c@92
|
152 desc2.valueNames.push_back("512");
|
c@92
|
153 desc2.valueNames.push_back("1024");
|
c@92
|
154 desc2.valueNames.push_back("2048");
|
c@92
|
155 desc2.valueNames.push_back("4096");
|
c@92
|
156 desc2.valueNames.push_back("8192");
|
c@92
|
157 desc2.valueNames.push_back("16384");
|
c@92
|
158 list.push_back(desc2);
|
c@92
|
159
|
c@109
|
160 ParameterDescriptor desc3;
|
c@114
|
161 desc3.identifier = "coarse";
|
c@114
|
162 desc3.name = "Omit alternate resolutions";
|
c@114
|
163 desc3.description = "Generate a coarser spectrogram faster by excluding every alternate resolution (first and last resolution are always retained)";
|
c@114
|
164 desc3.unit = "";
|
c@114
|
165 desc3.minValue = 0;
|
c@114
|
166 desc3.maxValue = 1;
|
c@114
|
167 desc3.defaultValue = 0;
|
c@114
|
168 desc3.isQuantized = true;
|
c@114
|
169 desc3.quantizeStep = 1;
|
c@114
|
170 list.push_back(desc3);
|
c@114
|
171
|
c@109
|
172 desc3.identifier = "threaded";
|
c@109
|
173 desc3.name = "Multi-threaded processing";
|
c@110
|
174 desc3.description = "Perform calculations using several threads in parallel";
|
c@109
|
175 desc3.unit = "";
|
c@109
|
176 desc3.minValue = 0;
|
c@109
|
177 desc3.maxValue = 1;
|
c@109
|
178 desc3.defaultValue = 1;
|
c@109
|
179 desc3.isQuantized = true;
|
c@109
|
180 desc3.quantizeStep = 1;
|
c@109
|
181 list.push_back(desc3);
|
c@109
|
182
|
c@92
|
183 return list;
|
c@92
|
184 }
|
c@92
|
185
|
c@92
|
186 float
|
c@92
|
187 AdaptiveSpectrogram::getParameter(std::string id) const
|
c@92
|
188 {
|
c@92
|
189 if (id == "n") return m_n+1;
|
c@92
|
190 else if (id == "w") return m_w+1;
|
c@109
|
191 else if (id == "threaded") return (m_threaded ? 1 : 0);
|
c@114
|
192 else if (id == "coarse") return (m_coarse ? 1 : 0);
|
c@92
|
193 return 0.f;
|
c@92
|
194 }
|
c@92
|
195
|
c@92
|
196 void
|
c@92
|
197 AdaptiveSpectrogram::setParameter(std::string id, float value)
|
c@92
|
198 {
|
c@92
|
199 if (id == "n") {
|
c@92
|
200 int n = lrintf(value);
|
c@92
|
201 if (n >= 1 && n <= 10) m_n = n-1;
|
c@92
|
202 } else if (id == "w") {
|
c@92
|
203 int w = lrintf(value);
|
c@92
|
204 if (w >= 1 && w <= 14) m_w = w-1;
|
c@109
|
205 } else if (id == "threaded") {
|
c@109
|
206 m_threaded = (value > 0.5);
|
c@114
|
207 } else if (id == "coarse") {
|
c@114
|
208 m_coarse = (value > 0.5);
|
c@109
|
209 }
|
c@92
|
210 }
|
c@92
|
211
|
c@92
|
212 AdaptiveSpectrogram::OutputList
|
c@92
|
213 AdaptiveSpectrogram::getOutputDescriptors() const
|
c@92
|
214 {
|
c@92
|
215 OutputList list;
|
c@92
|
216
|
c@92
|
217 OutputDescriptor d;
|
c@92
|
218 d.identifier = "output";
|
c@92
|
219 d.name = "Output";
|
c@92
|
220 d.description = "The output of the plugin";
|
c@92
|
221 d.unit = "";
|
c@92
|
222 d.hasFixedBinCount = true;
|
c@114
|
223 d.binCount = getPreferredBlockSize() / 2;
|
c@92
|
224 d.hasKnownExtents = false;
|
c@92
|
225 d.isQuantized = false;
|
c@92
|
226 d.sampleType = OutputDescriptor::FixedSampleRate;
|
c@92
|
227 d.sampleRate = m_inputSampleRate / ((2 << m_w) / 2);
|
c@92
|
228 d.hasDuration = false;
|
c@112
|
229 char name[20];
|
c@112
|
230 for (int i = 0; i < d.binCount; ++i) {
|
c@114
|
231 float freq = (m_inputSampleRate / (d.binCount * 2)) * (i + 1); // no DC bin
|
c@112
|
232 sprintf(name, "%d Hz", int(freq));
|
c@112
|
233 d.binNames.push_back(name);
|
c@112
|
234 }
|
c@92
|
235 list.push_back(d);
|
c@92
|
236
|
c@92
|
237 return list;
|
c@92
|
238 }
|
c@92
|
239
|
c@92
|
240 AdaptiveSpectrogram::FeatureSet
|
c@92
|
241 AdaptiveSpectrogram::getRemainingFeatures()
|
c@92
|
242 {
|
c@92
|
243 FeatureSet fs;
|
c@92
|
244 return fs;
|
c@92
|
245 }
|
c@92
|
246
|
c@100
|
247 AdaptiveSpectrogram::FeatureSet
|
c@100
|
248 AdaptiveSpectrogram::process(const float *const *inputBuffers, RealTime ts)
|
c@100
|
249 {
|
c@100
|
250 FeatureSet fs;
|
c@100
|
251
|
c@100
|
252 int minwid = (2 << m_w), maxwid = ((2 << m_w) << m_n);
|
c@100
|
253
|
c@101
|
254 #ifdef DEBUG_VERBOSE
|
c@100
|
255 cerr << "widths from " << minwid << " to " << maxwid << " ("
|
c@100
|
256 << minwid/2 << " to " << maxwid/2 << " in real parts)" << endl;
|
c@101
|
257 #endif
|
c@100
|
258
|
c@100
|
259 Spectrograms s(minwid/2, maxwid/2, 1);
|
c@100
|
260
|
c@100
|
261 int w = minwid;
|
c@100
|
262 int index = 0;
|
c@100
|
263
|
c@100
|
264 while (w <= maxwid) {
|
c@114
|
265
|
c@114
|
266 if (!isResolutionWanted(s, w/2)) {
|
c@114
|
267 w *= 2;
|
c@114
|
268 ++index;
|
c@114
|
269 continue;
|
c@114
|
270 }
|
c@114
|
271
|
c@106
|
272 if (m_fftThreads.find(w) == m_fftThreads.end()) {
|
c@106
|
273 m_fftThreads[w] = new FFTThread(w);
|
c@106
|
274 }
|
c@109
|
275 if (m_threaded) {
|
c@114
|
276 m_fftThreads[w]->startCalculation
|
c@114
|
277 (inputBuffers[0], s, index, maxwid);
|
c@109
|
278 } else {
|
c@114
|
279 m_fftThreads[w]->setParameters
|
c@114
|
280 (inputBuffers[0], s, index, maxwid);
|
c@109
|
281 m_fftThreads[w]->performTask();
|
c@109
|
282 }
|
c@100
|
283 w *= 2;
|
c@100
|
284 ++index;
|
c@100
|
285 }
|
c@100
|
286
|
c@109
|
287 if (m_threaded) {
|
c@109
|
288 w = minwid;
|
c@114
|
289 index = 0;
|
c@109
|
290 while (w <= maxwid) {
|
c@114
|
291 if (!isResolutionWanted(s, w/2)) {
|
c@114
|
292 w *= 2;
|
c@114
|
293 ++index;
|
c@114
|
294 continue;
|
c@114
|
295 }
|
c@109
|
296 m_fftThreads[w]->await();
|
c@109
|
297 w *= 2;
|
c@114
|
298 ++index;
|
c@109
|
299 }
|
c@105
|
300 }
|
c@102
|
301
|
c@109
|
302 m_threadsInUse = false;
|
c@104
|
303
|
c@114
|
304 // std::cerr << "maxwid/2 = " << maxwid/2 << ", minwid/2 = " << minwid/2 << ", n+1 = " << m_n+1 << ", 2^(n+1) = " << (2<<m_n) << std::endl;
|
c@110
|
305
|
c@114
|
306 int cutwid = maxwid/2;
|
c@114
|
307 Cutting *cutting = cut(s, cutwid, 0, 0, cutwid, 0);
|
c@100
|
308
|
c@101
|
309 #ifdef DEBUG_VERBOSE
|
c@100
|
310 printCutting(cutting, " ");
|
c@101
|
311 #endif
|
c@100
|
312
|
c@100
|
313 vector<vector<float> > rmat(maxwid/minwid);
|
c@100
|
314 for (int i = 0; i < maxwid/minwid; ++i) {
|
c@100
|
315 rmat[i] = vector<float>(maxwid/2);
|
c@100
|
316 }
|
c@100
|
317
|
c@114
|
318 assemble(s, cutting, rmat, 0, 0, maxwid/minwid, cutwid);
|
c@100
|
319
|
c@110
|
320 cutting->erase();
|
c@100
|
321
|
c@100
|
322 for (int i = 0; i < rmat.size(); ++i) {
|
c@100
|
323 Feature f;
|
c@100
|
324 f.hasTimestamp = false;
|
c@100
|
325 f.values = rmat[i];
|
c@100
|
326 fs[0].push_back(f);
|
c@100
|
327 }
|
c@100
|
328
|
c@104
|
329 // std::cerr << "process returning!\n" << std::endl;
|
c@104
|
330
|
c@100
|
331 return fs;
|
c@100
|
332 }
|
c@100
|
333
|
c@100
|
334 void
|
c@104
|
335 AdaptiveSpectrogram::printCutting(Cutting *c, string pfx) const
|
c@100
|
336 {
|
c@100
|
337 if (c->first) {
|
c@100
|
338 if (c->cut == Cutting::Horizontal) {
|
c@100
|
339 cerr << pfx << "H" << endl;
|
c@100
|
340 } else if (c->cut == Cutting::Vertical) {
|
c@100
|
341 cerr << pfx << "V" << endl;
|
c@100
|
342 }
|
c@100
|
343 printCutting(c->first, pfx + " ");
|
c@100
|
344 printCutting(c->second, pfx + " ");
|
c@100
|
345 } else {
|
c@100
|
346 cerr << pfx << "* " << c->value << endl;
|
c@100
|
347 }
|
c@100
|
348 }
|
c@100
|
349
|
c@104
|
350 void
|
c@104
|
351 AdaptiveSpectrogram::getSubCuts(const Spectrograms &s,
|
c@104
|
352 int res,
|
c@104
|
353 int x, int y, int h,
|
c@114
|
354 Cutting **top, Cutting **bottom,
|
c@114
|
355 Cutting **left, Cutting **right,
|
c@113
|
356 BlockAllocator *allocator) const
|
c@104
|
357 {
|
c@109
|
358 if (m_threaded && !m_threadsInUse) {
|
c@104
|
359
|
c@109
|
360 m_threadsInUse = true;
|
c@104
|
361
|
c@104
|
362 if (m_cutThreads.empty()) {
|
c@104
|
363 for (int i = 0; i < 4; ++i) {
|
c@104
|
364 CutThread *t = new CutThread(this);
|
c@104
|
365 m_cutThreads.push_back(t);
|
c@104
|
366 }
|
c@104
|
367 }
|
c@104
|
368
|
c@109
|
369 // Cut threads 0 and 1 calculate the top and bottom halves;
|
c@110
|
370 // threads 2 and 3 calculate left and right. See notes in
|
c@110
|
371 // unthreaded code below for more information.
|
c@104
|
372
|
c@114
|
373 if (top) m_cutThreads[0]->cut(s, res, x, y + h/2, h/2);
|
c@114
|
374 if (bottom) m_cutThreads[1]->cut(s, res, x, y, h/2);
|
c@104
|
375
|
c@114
|
376 if (left) m_cutThreads[2]->cut(s, res/2, 2 * x, y/2, h/2);
|
c@114
|
377 if (right) m_cutThreads[3]->cut(s, res/2, 2 * x + 1, y/2, h/2);
|
c@114
|
378
|
c@114
|
379 if (top) *top = m_cutThreads[0]->get();
|
c@114
|
380 if (bottom) *bottom = m_cutThreads[1]->get();
|
c@114
|
381 if (left) *left = m_cutThreads[2]->get();
|
c@114
|
382 if (right) *right = m_cutThreads[3]->get();
|
c@104
|
383
|
c@104
|
384 } else {
|
c@104
|
385
|
c@110
|
386 // Unthreaded version
|
c@104
|
387
|
c@104
|
388 // The "vertical" division is a top/bottom split.
|
c@104
|
389 // Splitting this way keeps us in the same resolution,
|
c@104
|
390 // but with two vertical subregions of height h/2.
|
c@104
|
391
|
c@114
|
392 if (top) *top = cut(s, res, x, y + h/2, h/2, allocator);
|
c@114
|
393 if (bottom) *bottom = cut(s, res, x, y, h/2, allocator);
|
c@104
|
394
|
c@104
|
395 // The "horizontal" division is a left/right split. Splitting
|
c@104
|
396 // this way places us in resolution res/2, which has lower
|
c@104
|
397 // vertical resolution but higher horizontal resolution. We
|
c@104
|
398 // need to double x accordingly.
|
c@104
|
399
|
c@114
|
400 if (left) *left = cut(s, res/2, 2 * x, y/2, h/2, allocator);
|
c@114
|
401 if (right) *right = cut(s, res/2, 2 * x + 1, y/2, h/2, allocator);
|
c@104
|
402 }
|
c@104
|
403 }
|
c@104
|
404
|
c@100
|
405 AdaptiveSpectrogram::Cutting *
|
c@100
|
406 AdaptiveSpectrogram::cut(const Spectrograms &s,
|
c@100
|
407 int res,
|
c@110
|
408 int x, int y, int h,
|
c@110
|
409 BlockAllocator *allocator) const
|
c@100
|
410 {
|
c@100
|
411 // cerr << "res = " << res << ", x = " << x << ", y = " << y << ", h = " << h << endl;
|
c@100
|
412
|
c@110
|
413 Cutting *cutting;
|
c@110
|
414 if (allocator) {
|
c@110
|
415 cutting = (Cutting *)(allocator->allocate());
|
c@110
|
416 cutting->allocator = allocator;
|
c@110
|
417 } else {
|
c@110
|
418 cutting = new Cutting;
|
c@110
|
419 cutting->allocator = 0;
|
c@110
|
420 }
|
c@110
|
421
|
c@100
|
422 if (h > 1 && res > s.minres) {
|
c@100
|
423
|
c@114
|
424 if (!isResolutionWanted(s, res)) {
|
c@100
|
425
|
c@114
|
426 Cutting *left = 0, *right = 0;
|
c@114
|
427 getSubCuts(s, res, x, y, h, 0, 0, &left, &right, allocator);
|
c@114
|
428
|
c@114
|
429 double hcost = left->cost + right->cost;
|
c@101
|
430 double henergy = left->value + right->value;
|
c@114
|
431 hcost = normalize(hcost, henergy);
|
c@114
|
432
|
c@100
|
433 cutting->cut = Cutting::Horizontal;
|
c@100
|
434 cutting->first = left;
|
c@100
|
435 cutting->second = right;
|
c@100
|
436 cutting->cost = hcost;
|
c@111
|
437 cutting->value = left->value + right->value;
|
c@100
|
438
|
c@114
|
439 } else if (h == 2 && !isResolutionWanted(s, res/2)) {
|
c@100
|
440
|
c@114
|
441 Cutting *top = 0, *bottom = 0;
|
c@114
|
442 getSubCuts(s, res, x, y, h, &top, &bottom, 0, 0, allocator);
|
c@114
|
443
|
c@114
|
444 double vcost = top->cost + bottom->cost;
|
c@114
|
445 double venergy = top->value + bottom->value;
|
c@114
|
446 vcost = normalize(vcost, venergy);
|
c@114
|
447
|
c@100
|
448 cutting->cut = Cutting::Vertical;
|
c@100
|
449 cutting->first = top;
|
c@100
|
450 cutting->second = bottom;
|
c@100
|
451 cutting->cost = vcost;
|
c@111
|
452 cutting->value = top->value + bottom->value;
|
c@114
|
453
|
c@114
|
454 } else {
|
c@114
|
455
|
c@114
|
456 Cutting *top = 0, *bottom = 0, *left = 0, *right = 0;
|
c@114
|
457 getSubCuts(s, res, x, y, h, &top, &bottom, &left, &right, allocator);
|
c@114
|
458
|
c@114
|
459 double vcost = top->cost + bottom->cost;
|
c@114
|
460 double venergy = top->value + bottom->value;
|
c@114
|
461 vcost = normalize(vcost, venergy);
|
c@114
|
462
|
c@114
|
463 double hcost = left->cost + right->cost;
|
c@114
|
464 double henergy = left->value + right->value;
|
c@114
|
465 hcost = normalize(hcost, henergy);
|
c@114
|
466
|
c@114
|
467 if (vcost > hcost) {
|
c@114
|
468 cutting->cut = Cutting::Horizontal;
|
c@114
|
469 cutting->first = left;
|
c@114
|
470 cutting->second = right;
|
c@114
|
471 cutting->cost = hcost;
|
c@114
|
472 cutting->value = left->value + right->value;
|
c@114
|
473 top->erase();
|
c@114
|
474 bottom->erase();
|
c@114
|
475 return cutting;
|
c@114
|
476 } else {
|
c@114
|
477 cutting->cut = Cutting::Vertical;
|
c@114
|
478 cutting->first = top;
|
c@114
|
479 cutting->second = bottom;
|
c@114
|
480 cutting->cost = vcost;
|
c@114
|
481 cutting->value = top->value + bottom->value;
|
c@114
|
482 left->erase();
|
c@114
|
483 right->erase();
|
c@114
|
484 return cutting;
|
c@114
|
485 }
|
c@100
|
486 }
|
c@100
|
487
|
c@100
|
488 } else {
|
c@100
|
489
|
c@100
|
490 // no cuts possible from this level
|
c@100
|
491
|
c@100
|
492 cutting->cut = Cutting::Finished;
|
c@100
|
493 cutting->first = 0;
|
c@100
|
494 cutting->second = 0;
|
c@100
|
495
|
c@100
|
496 int n = 0;
|
c@114
|
497 for (int r = res; r > s.minres; r >>= 1) ++n;
|
c@100
|
498 const Spectrogram *spectrogram = s.spectrograms[n];
|
c@100
|
499 cutting->cost = cost(*spectrogram, x, y);
|
c@100
|
500 cutting->value = value(*spectrogram, x, y);
|
c@114
|
501 }
|
c@100
|
502
|
c@114
|
503 return cutting;
|
c@100
|
504 }
|
c@100
|
505
|
c@100
|
506 void
|
c@100
|
507 AdaptiveSpectrogram::assemble(const Spectrograms &s,
|
c@100
|
508 const Cutting *cutting,
|
c@100
|
509 vector<vector<float> > &rmat,
|
c@104
|
510 int x, int y, int w, int h) const
|
c@100
|
511 {
|
c@100
|
512 switch (cutting->cut) {
|
c@100
|
513
|
c@100
|
514 case Cutting::Finished:
|
c@100
|
515 for (int i = 0; i < w; ++i) {
|
c@100
|
516 for (int j = 0; j < h; ++j) {
|
c@114
|
517 rmat[x+i][y+j] = cutting->value;
|
c@100
|
518 }
|
c@100
|
519 }
|
c@100
|
520 return;
|
c@100
|
521
|
c@100
|
522 case Cutting::Horizontal:
|
c@100
|
523 assemble(s, cutting->first, rmat, x, y, w/2, h);
|
c@100
|
524 assemble(s, cutting->second, rmat, x+w/2, y, w/2, h);
|
c@100
|
525 break;
|
c@100
|
526
|
c@100
|
527 case Cutting::Vertical:
|
c@100
|
528 assemble(s, cutting->first, rmat, x, y+h/2, w, h/2);
|
c@100
|
529 assemble(s, cutting->second, rmat, x, y, w, h/2);
|
c@100
|
530 break;
|
c@100
|
531 }
|
c@100
|
532 }
|
c@100
|
533
|