view base/Window.h @ 96:88f3cfcff55f

A threshold (delta) is added in the peak picking parameters structure (PPickParams). It is used as an offset when computing the smoothed detection function. A constructor for the structure PPickParams is also added to set the parameters to 0 when a structure instance is created. Hence programmes using the peak picking parameter structure and which do not set the delta parameter (e.g. QM Vamp note onset detector) won't be affected by the modifications. Functions modified: - dsp/onsets/PeakPicking.cpp - dsp/onsets/PeakPicking.h - dsp/signalconditioning/DFProcess.cpp - dsp/signalconditioning/DFProcess.h
author mathieub <mathieu.barthet@eecs.qmul.ac.uk>
date Mon, 20 Jun 2011 19:01:48 +0100
parents e5907ae6de17
children 627d364bbc82
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */

/*
    QM DSP library
    Centre for Digital Music, Queen Mary, University of London.
    This file Copyright 2006 Chris Cannam.

    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License as
    published by the Free Software Foundation; either version 2 of the
    License, or (at your option) any later version.  See the file
    COPYING included with this distribution for more information.
*/

#ifndef _WINDOW_H_
#define _WINDOW_H_

#include <cmath>
#include <iostream>
#include <map>

enum WindowType {
    RectangularWindow,
    BartlettWindow,
    HammingWindow,
    HanningWindow,
    BlackmanWindow,
    GaussianWindow,
    ParzenWindow
};

template <typename T>
class Window
{
public:
    /**
     * Construct a windower of the given type.
     */
    Window(WindowType type, size_t size) : m_type(type), m_size(size) { encache(); }
    Window(const Window &w) : m_type(w.m_type), m_size(w.m_size) { encache(); }
    Window &operator=(const Window &w) {
	if (&w == this) return *this;
	m_type = w.m_type;
	m_size = w.m_size;
	encache();
	return *this;
    }
    virtual ~Window() { delete[] m_cache; }
    
    void cut(T *src) const { cut(src, src); }
    void cut(const T *src, T *dst) const {
	for (size_t i = 0; i < m_size; ++i) dst[i] = src[i] * m_cache[i];
    }

    WindowType getType() const { return m_type; }
    size_t getSize() const { return m_size; }

protected:
    WindowType m_type;
    size_t m_size;
    T *m_cache;
    
    void encache();
};

template <typename T>
void Window<T>::encache()
{
    size_t n = m_size;
    T *mult = new T[n];
    size_t i;
    for (i = 0; i < n; ++i) mult[i] = 1.0;

    switch (m_type) {
		
    case RectangularWindow:
	for (i = 0; i < n; ++i) {
	    mult[i] = mult[i] * 0.5;
	}
	break;
	    
    case BartlettWindow:
	for (i = 0; i < n/2; ++i) {
	    mult[i] = mult[i] * (i / T(n/2));
	    mult[i + n/2] = mult[i + n/2] * (1.0 - (i / T(n/2)));
	}
	break;
	    
    case HammingWindow:
	for (i = 0; i < n; ++i) {
	    mult[i] = mult[i] * (0.54 - 0.46 * cos(2 * M_PI * i / n));
	}
	break;
	    
    case HanningWindow:
	for (i = 0; i < n; ++i) {
	    mult[i] = mult[i] * (0.50 - 0.50 * cos(2 * M_PI * i / n));
	}
	break;
	    
    case BlackmanWindow:
	for (i = 0; i < n; ++i) {
	    mult[i] = mult[i] * (0.42 - 0.50 * cos(2 * M_PI * i / n)
				 + 0.08 * cos(4 * M_PI * i / n));
	}
	break;
	    
    case GaussianWindow:
	for (i = 0; i < n; ++i) {
	    mult[i] = mult[i] * exp((-1.0 / (n*n)) * ((T(2*i) - n) *
						      (T(2*i) - n)));
	}
	break;
	    
    case ParzenWindow:
	for (i = 0; i < n; ++i) {
	    mult[i] = mult[i] * (1.0 - fabs((T(2*i) - n) / T(n + 1)));
	}
	break;
    }
	
    m_cache = mult;
}

#endif