annotate base/Window.h @ 96:88f3cfcff55f

A threshold (delta) is added in the peak picking parameters structure (PPickParams). It is used as an offset when computing the smoothed detection function. A constructor for the structure PPickParams is also added to set the parameters to 0 when a structure instance is created. Hence programmes using the peak picking parameter structure and which do not set the delta parameter (e.g. QM Vamp note onset detector) won't be affected by the modifications. Functions modified: - dsp/onsets/PeakPicking.cpp - dsp/onsets/PeakPicking.h - dsp/signalconditioning/DFProcess.cpp - dsp/signalconditioning/DFProcess.h
author mathieub <mathieu.barthet@eecs.qmul.ac.uk>
date Mon, 20 Jun 2011 19:01:48 +0100
parents e5907ae6de17
children 627d364bbc82
rev   line source
cannam@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
cannam@0 2
cannam@0 3 /*
cannam@0 4 QM DSP library
cannam@0 5 Centre for Digital Music, Queen Mary, University of London.
cannam@0 6 This file Copyright 2006 Chris Cannam.
Chris@84 7
Chris@84 8 This program is free software; you can redistribute it and/or
Chris@84 9 modify it under the terms of the GNU General Public License as
Chris@84 10 published by the Free Software Foundation; either version 2 of the
Chris@84 11 License, or (at your option) any later version. See the file
Chris@84 12 COPYING included with this distribution for more information.
cannam@0 13 */
cannam@0 14
cannam@0 15 #ifndef _WINDOW_H_
cannam@0 16 #define _WINDOW_H_
cannam@0 17
cannam@0 18 #include <cmath>
cannam@0 19 #include <iostream>
cannam@0 20 #include <map>
cannam@0 21
cannam@0 22 enum WindowType {
cannam@0 23 RectangularWindow,
cannam@0 24 BartlettWindow,
cannam@0 25 HammingWindow,
cannam@0 26 HanningWindow,
cannam@0 27 BlackmanWindow,
cannam@0 28 GaussianWindow,
cannam@0 29 ParzenWindow
cannam@0 30 };
cannam@0 31
cannam@0 32 template <typename T>
cannam@0 33 class Window
cannam@0 34 {
cannam@0 35 public:
cannam@0 36 /**
cannam@0 37 * Construct a windower of the given type.
cannam@0 38 */
cannam@0 39 Window(WindowType type, size_t size) : m_type(type), m_size(size) { encache(); }
cannam@0 40 Window(const Window &w) : m_type(w.m_type), m_size(w.m_size) { encache(); }
cannam@0 41 Window &operator=(const Window &w) {
cannam@0 42 if (&w == this) return *this;
cannam@0 43 m_type = w.m_type;
cannam@0 44 m_size = w.m_size;
cannam@0 45 encache();
cannam@0 46 return *this;
cannam@0 47 }
cannam@26 48 virtual ~Window() { delete[] m_cache; }
cannam@0 49
cannam@0 50 void cut(T *src) const { cut(src, src); }
cannam@55 51 void cut(const T *src, T *dst) const {
cannam@0 52 for (size_t i = 0; i < m_size; ++i) dst[i] = src[i] * m_cache[i];
cannam@0 53 }
cannam@0 54
cannam@0 55 WindowType getType() const { return m_type; }
cannam@0 56 size_t getSize() const { return m_size; }
cannam@0 57
cannam@0 58 protected:
cannam@0 59 WindowType m_type;
cannam@0 60 size_t m_size;
cannam@0 61 T *m_cache;
cannam@0 62
cannam@0 63 void encache();
cannam@0 64 };
cannam@0 65
cannam@0 66 template <typename T>
cannam@0 67 void Window<T>::encache()
cannam@0 68 {
cannam@0 69 size_t n = m_size;
cannam@0 70 T *mult = new T[n];
cannam@0 71 size_t i;
cannam@0 72 for (i = 0; i < n; ++i) mult[i] = 1.0;
cannam@0 73
cannam@0 74 switch (m_type) {
cannam@0 75
cannam@0 76 case RectangularWindow:
cannam@0 77 for (i = 0; i < n; ++i) {
cannam@0 78 mult[i] = mult[i] * 0.5;
cannam@0 79 }
cannam@0 80 break;
cannam@0 81
cannam@0 82 case BartlettWindow:
cannam@0 83 for (i = 0; i < n/2; ++i) {
cannam@0 84 mult[i] = mult[i] * (i / T(n/2));
cannam@0 85 mult[i + n/2] = mult[i + n/2] * (1.0 - (i / T(n/2)));
cannam@0 86 }
cannam@0 87 break;
cannam@0 88
cannam@0 89 case HammingWindow:
cannam@0 90 for (i = 0; i < n; ++i) {
cannam@0 91 mult[i] = mult[i] * (0.54 - 0.46 * cos(2 * M_PI * i / n));
cannam@0 92 }
cannam@0 93 break;
cannam@0 94
cannam@0 95 case HanningWindow:
cannam@0 96 for (i = 0; i < n; ++i) {
cannam@0 97 mult[i] = mult[i] * (0.50 - 0.50 * cos(2 * M_PI * i / n));
cannam@0 98 }
cannam@0 99 break;
cannam@0 100
cannam@0 101 case BlackmanWindow:
cannam@0 102 for (i = 0; i < n; ++i) {
cannam@0 103 mult[i] = mult[i] * (0.42 - 0.50 * cos(2 * M_PI * i / n)
cannam@0 104 + 0.08 * cos(4 * M_PI * i / n));
cannam@0 105 }
cannam@0 106 break;
cannam@0 107
cannam@0 108 case GaussianWindow:
cannam@0 109 for (i = 0; i < n; ++i) {
cannam@0 110 mult[i] = mult[i] * exp((-1.0 / (n*n)) * ((T(2*i) - n) *
cannam@0 111 (T(2*i) - n)));
cannam@0 112 }
cannam@0 113 break;
cannam@0 114
cannam@0 115 case ParzenWindow:
cannam@0 116 for (i = 0; i < n; ++i) {
cannam@0 117 mult[i] = mult[i] * (1.0 - fabs((T(2*i) - n) / T(n + 1)));
cannam@0 118 }
cannam@0 119 break;
cannam@0 120 }
cannam@0 121
cannam@0 122 m_cache = mult;
cannam@0 123 }
cannam@0 124
cannam@0 125 #endif