Mercurial > hg > qm-dsp
diff dsp/tempotracking/TempoTrackV2.cpp @ 505:930b5b0f707d
Merge branch 'codestyle-and-tidy'
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 05 Jun 2019 12:55:15 +0100 |
parents | 162673c8f9de |
children |
line wrap: on
line diff
--- a/dsp/tempotracking/TempoTrackV2.cpp Thu May 30 16:18:13 2019 +0100 +++ b/dsp/tempotracking/TempoTrackV2.cpp Wed Jun 05 12:55:15 2019 +0100 @@ -21,18 +21,24 @@ #include "maths/MathUtilities.h" +using std::vector; + #define EPS 0.0000008 // just some arbitrary small number -TempoTrackV2::TempoTrackV2(float rate, size_t increment) : - m_rate(rate), m_increment(increment) { } +TempoTrackV2::TempoTrackV2(float rate, int increment) : + m_rate(rate), m_increment(increment) { +} + TempoTrackV2::~TempoTrackV2() { } void TempoTrackV2::filter_df(d_vec_t &df) { + int df_len = int(df.size()); + d_vec_t a(3); d_vec_t b(3); - d_vec_t lp_df(df.size()); + d_vec_t lp_df(df_len); //equivalent in matlab to [b,a] = butter(2,0.4); a[0] = 1.0000; @@ -49,8 +55,7 @@ // forwards filtering - for (unsigned int i = 0;i < df.size();i++) - { + for (int i = 0; i < df_len; i++) { lp_df[i] = b[0]*df[i] + b[1]*inp1 + b[2]*inp2 - a[1]*out1 - a[2]*out2; inp2 = inp1; inp1 = df[i]; @@ -60,22 +65,19 @@ // copy forwards filtering to df... // but, time-reversed, ready for backwards filtering - for (unsigned int i = 0;i < df.size();i++) - { - df[i] = lp_df[df.size()-i-1]; + for (int i = 0; i < df_len; i++) { + df[i] = lp_df[df_len - i - 1]; } - for (unsigned int i = 0;i < df.size();i++) - { + for (int i = 0; i < df_len; i++) { lp_df[i] = 0.; } inp1 = 0.; inp2 = 0.; out1 = 0.; out2 = 0.; - // backwards filetering on time-reversed df - for (unsigned int i = 0;i < df.size();i++) - { + // backwards filetering on time-reversed df + for (int i = 0; i < df_len; i++) { lp_df[i] = b[0]*df[i] + b[1]*inp1 + b[2]*inp2 - a[1]*out1 - a[2]*out2; inp2 = inp1; inp1 = df[i]; @@ -83,10 +85,9 @@ out1 = lp_df[i]; } - // write the re-reversed (i.e. forward) version back to df - for (unsigned int i = 0;i < df.size();i++) - { - df[i] = lp_df[df.size()-i-1]; + // write the re-reversed (i.e. forward) version back to df + for (int i = 0; i < df_len; i++) { + df[i] = lp_df[df_len - i - 1]; } } @@ -109,7 +110,7 @@ // then call viterbi decoding with weight vector and transition matrix // and get best path - unsigned int wv_len = 128; + int wv_len = 128; // MEPD 28/11/12 // the default value of inputtempo in the beat tracking plugin is 120 @@ -119,50 +120,40 @@ // this might (will?) break if a user specifies a different frame rate for the onset detection function double rayparam = (60*44100/512)/inputtempo; - // these debug statements can be removed. -// std::cerr << "inputtempo" << inputtempo << std::endl; -// std::cerr << "rayparam" << rayparam << std::endl; -// std::cerr << "constraintempo" << constraintempo << std::endl; - // make rayleigh weighting curve d_vec_t wv(wv_len); // check whether or not to use rayleigh weighting (if constraintempo is false) // or use gaussian weighting it (constraintempo is true) - if (constraintempo) - { - for (unsigned int i=0; i<wv.size(); i++) - { + if (constraintempo) { + for (int i = 0; i < wv_len; i++) { // MEPD 28/11/12 // do a gaussian weighting instead of rayleigh - wv[i] = exp( (-1.*pow((static_cast<double> (i)-rayparam),2.)) / (2.*pow(rayparam/4.,2.)) ); + wv[i] = exp( (-1.*pow((double(i)-rayparam),2.)) / (2.*pow(rayparam/4.,2.)) ); } - } - else - { - for (unsigned int i=0; i<wv.size(); i++) - { + } else { + for (int i = 0; i < wv_len; i++) { // MEPD 28/11/12 // standard rayleigh weighting over periodicities - wv[i] = (static_cast<double> (i) / pow(rayparam,2.)) * exp((-1.*pow(-static_cast<double> (i),2.)) / (2.*pow(rayparam,2.))); + wv[i] = (double(i) / pow(rayparam,2.)) * exp((-1.*pow(-double(i),2.)) / (2.*pow(rayparam,2.))); } } // beat tracking frame size (roughly 6 seconds) and hop (1.5 seconds) - unsigned int winlen = 512; - unsigned int step = 128; + int winlen = 512; + int step = 128; // matrix to store output of comb filter bank, increment column of matrix at each frame d_mat_t rcfmat; int col_counter = -1; + int df_len = int(df.size()); // main loop for beat period calculation - for (unsigned int i=0; i+winlen<df.size(); i+=step) - { + for (int i = 0; i+winlen < df_len; i+=step) { + // get dfframe d_vec_t dfframe(winlen); - for (unsigned int k=0; k<winlen; k++) - { + for (int k=0; k < winlen; k++) { dfframe[k] = df[i+k]; } // get rcf vector for current frame @@ -171,8 +162,7 @@ rcfmat.push_back( d_vec_t() ); // adds a new column col_counter++; - for (unsigned int j=0; j<rcf.size(); j++) - { + for (int j = 0; j < wv_len; j++) { rcfmat[col_counter].push_back( rcf[j] ); } } @@ -195,32 +185,29 @@ MathUtilities::adaptiveThreshold(dfframe); - d_vec_t acf(dfframe.size()); + int dfframe_len = int(dfframe.size()); + int rcf_len = int(rcf.size()); + + d_vec_t acf(dfframe_len); - - for (unsigned int lag=0; lag<dfframe.size(); lag++) - { + for (int lag = 0; lag < dfframe_len; lag++) { double sum = 0.; double tmp = 0.; - for (unsigned int n=0; n<(dfframe.size()-lag); n++) - { - tmp = dfframe[n] * dfframe[n+lag]; + for (int n = 0; n < (dfframe_len - lag); n++) { + tmp = dfframe[n] * dfframe[n + lag]; sum += tmp; } - acf[lag] = static_cast<double> (sum/ (dfframe.size()-lag)); + acf[lag] = double(sum/ (dfframe_len - lag)); } // now apply comb filtering int numelem = 4; - for (unsigned int i = 2;i < rcf.size();i++) // max beat period - { - for (int a = 1;a <= numelem;a++) // number of comb elements - { - for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements - { - rcf[i-1] += ( acf[(a*i+b)-1]*wv[i-1] ) / (2.*a-1.); // calculate value for comb filter row + for (int i = 2; i < rcf_len; i++) { // max beat period + for (int a = 1; a <= numelem; a++) { // number of comb elements + for (int b = 1-a; b <= a-1; b++) { // general state using normalisation of comb elements + rcf[i-1] += ( acf[(a*i+b)-1]*wv[i-1] ) / (2.*a-1.); // calculate value for comb filter row } } } @@ -229,15 +216,13 @@ MathUtilities::adaptiveThreshold(rcf); double rcfsum =0.; - for (unsigned int i=0; i<rcf.size(); i++) - { + for (int i = 0; i < rcf_len; i++) { rcf[i] += EPS ; rcfsum += rcf[i]; } // normalise rcf to sum to unity - for (unsigned int i=0; i<rcf.size(); i++) - { + for (int i = 0; i < rcf_len; i++) { rcf[i] /= (rcfsum + EPS); } } @@ -247,14 +232,14 @@ { // following Kevin Murphy's Viterbi decoding to get best path of // beat periods through rfcmat - + + int wv_len = int(wv.size()); + // make transition matrix d_mat_t tmat; - for (unsigned int i=0;i<wv.size();i++) - { + for (int i = 0; i < wv_len; i++) { tmat.push_back ( d_vec_t() ); // adds a new column - for (unsigned int j=0; j<wv.size(); j++) - { + for (int j = 0; j < wv_len; j++) { tmat[i].push_back(0.); // fill with zeros initially } } @@ -263,11 +248,9 @@ // formed of Gaussians on diagonal - implies slow tempo change double sigma = 8.; // don't want really short beat periods, or really long ones - for (unsigned int i=20;i <wv.size()-20; i++) - { - for (unsigned int j=20; j<wv.size()-20; j++) - { - double mu = static_cast<double>(i); + for (int i = 20; i < wv_len - 20; i++) { + for (int j = 20; j < wv_len - 20; j++) { + double mu = double(i); tmat[i][j] = exp( (-1.*pow((j-mu),2.)) / (2.*pow(sigma,2.)) ); } } @@ -277,50 +260,41 @@ d_mat_t delta; i_mat_t psi; - for (unsigned int i=0;i <rcfmat.size(); i++) - { - delta.push_back( d_vec_t()); - psi.push_back( i_vec_t()); - for (unsigned int j=0; j<rcfmat[i].size(); j++) - { + for (int i = 0; i < int(rcfmat.size()); i++) { + delta.push_back(d_vec_t()); + psi.push_back(i_vec_t()); + for (int j = 0; j < int(rcfmat[i].size()); j++) { delta[i].push_back(0.); // fill with zeros initially psi[i].push_back(0); // fill with zeros initially } } - - unsigned int T = delta.size(); + int T = int(delta.size()); if (T < 2) return; // can't do anything at all meaningful - unsigned int Q = delta[0].size(); + int Q = int(delta[0].size()); // initialize first column of delta - for (unsigned int j=0; j<Q; j++) - { + for (int j = 0; j < Q; j++) { delta[0][j] = wv[j] * rcfmat[0][j]; psi[0][j] = 0; } double deltasum = 0.; - for (unsigned int i=0; i<Q; i++) - { + for (int i = 0; i < Q; i++) { deltasum += delta[0][i]; } - for (unsigned int i=0; i<Q; i++) - { + for (int i = 0; i < Q; i++) { delta[0][i] /= (deltasum + EPS); } - - for (unsigned int t=1; t<T; t++) + for (int t=1; t < T; t++) { d_vec_t tmp_vec(Q); - for (unsigned int j=0; j<Q; j++) - { - for (unsigned int i=0; i<Q; i++) - { + for (int j = 0; j < Q; j++) { + for (int i = 0; i < Q; i++) { tmp_vec[i] = delta[t-1][i] * tmat[j][i]; } @@ -333,20 +307,17 @@ // normalise current delta column double deltasum = 0.; - for (unsigned int i=0; i<Q; i++) - { + for (int i = 0; i < Q; i++) { deltasum += delta[t][i]; } - for (unsigned int i=0; i<Q; i++) - { + for (int i = 0; i < Q; i++) { delta[t][i] /= (deltasum + EPS); } } i_vec_t bestpath(T); d_vec_t tmp_vec(Q); - for (unsigned int i=0; i<Q; i++) - { + for (int i = 0; i < Q; i++) { tmp_vec[i] = delta[T-1][i]; } @@ -354,34 +325,29 @@ bestpath[T-1] = get_max_ind(tmp_vec); // backtrace through index of maximum values in psi - for (unsigned int t=T-2; t>0 ;t--) - { + for (int t=T-2; t>0 ;t--) { bestpath[t] = psi[t+1][bestpath[t+1]]; } // weird but necessary hack -- couldn't get above loop to terminate at t >= 0 bestpath[0] = psi[1][bestpath[1]]; - unsigned int lastind = 0; - for (unsigned int i=0; i<T; i++) - { - unsigned int step = 128; - for (unsigned int j=0; j<step; j++) - { + int lastind = 0; + for (int i = 0; i < T; i++) { + int step = 128; + for (int j = 0; j < step; j++) { lastind = i*step+j; beat_period[lastind] = bestpath[i]; } // std::cerr << "bestpath[" << i << "] = " << bestpath[i] << " (used for beat_periods " << i*step << " to " << i*step+step-1 << ")" << std::endl; } - //fill in the last values... - for (unsigned int i=lastind; i<beat_period.size(); i++) - { + // fill in the last values... + for (int i = lastind; i < int(beat_period.size()); i++) { beat_period[i] = beat_period[lastind]; } - for (unsigned int i = 0; i < beat_period.size(); i++) - { + for (int i = 0; i < int(beat_period.size()); i++) { tempi.push_back((60. * m_rate / m_increment)/beat_period[i]); } } @@ -390,10 +356,10 @@ TempoTrackV2::get_max_val(const d_vec_t &df) { double maxval = 0.; - for (unsigned int i=0; i<df.size(); i++) - { - if (maxval < df[i]) - { + int df_len = int(df.size()); + + for (int i = 0; i < df_len; i++) { + if (maxval < df[i]) { maxval = df[i]; } } @@ -406,10 +372,10 @@ { double maxval = 0.; int ind = 0; - for (unsigned int i=0; i<df.size(); i++) - { - if (maxval < df[i]) - { + int df_len = int(df.size()); + + for (int i = 0; i < df_len; i++) { + if (maxval < df[i]) { maxval = df[i]; ind = i; } @@ -422,13 +388,13 @@ TempoTrackV2::normalise_vec(d_vec_t &df) { double sum = 0.; - for (unsigned int i=0; i<df.size(); i++) - { + int df_len = int(df.size()); + + for (int i = 0; i < df_len; i++) { sum += df[i]; } - for (unsigned int i=0; i<df.size(); i++) - { + for (int i = 0; i < df_len; i++) { df[i]/= (sum + EPS); } } @@ -444,12 +410,13 @@ { if (df.empty() || beat_period.empty()) return; - d_vec_t cumscore(df.size()); // store cumulative score - i_vec_t backlink(df.size()); // backlink (stores best beat locations at each time instant) - d_vec_t localscore(df.size()); // localscore, for now this is the same as the detection function + int df_len = int(df.size()); - for (unsigned int i=0; i<df.size(); i++) - { + d_vec_t cumscore(df_len); // store cumulative score + i_vec_t backlink(df_len); // backlink (stores best beat locations at each time instant) + d_vec_t localscore(df_len); // localscore, for now this is the same as the detection function + + for (int i = 0; i < df_len; i++) { localscore[i] = df[i]; backlink[i] = -1; } @@ -462,26 +429,26 @@ // std::cerr << "tightness" << tightness << std::endl; // main loop - for (unsigned int i=0; i<localscore.size(); i++) - { + for (int i = 0; i < df_len; i++) { + int prange_min = -2*beat_period[i]; int prange_max = round(-0.5*beat_period[i]); // transition range - d_vec_t txwt (prange_max - prange_min + 1); - d_vec_t scorecands (txwt.size()); + int txwt_len = prange_max - prange_min + 1; + d_vec_t txwt (txwt_len); + d_vec_t scorecands (txwt_len); - for (unsigned int j=0;j<txwt.size();j++) - { - double mu = static_cast<double> (beat_period[i]); + for (int j = 0; j < txwt_len; j++) { + + double mu = double(beat_period[i]); txwt[j] = exp( -0.5*pow(tightness * log((round(2*mu)-j)/mu),2)); // IF IN THE ALLOWED RANGE, THEN LOOK AT CUMSCORE[I+PRANGE_MIN+J // ELSE LEAVE AT DEFAULT VALUE FROM INITIALISATION: D_VEC_T SCORECANDS (TXWT.SIZE()); - int cscore_ind = i+prange_min+j; - if (cscore_ind >= 0) - { + int cscore_ind = i + prange_min + j; + if (cscore_ind >= 0) { scorecands[j] = txwt[j] * cumscore[cscore_ind]; } } @@ -498,23 +465,24 @@ // STARTING POINT, I.E. LAST BEAT.. PICK A STRONG POINT IN cumscore VECTOR d_vec_t tmp_vec; - for (unsigned int i=cumscore.size() - beat_period[beat_period.size()-1] ; i<cumscore.size(); i++) - { + for (int i = df_len - beat_period[beat_period.size()-1] ; i < df_len; i++) { tmp_vec.push_back(cumscore[i]); } - int startpoint = get_max_ind(tmp_vec) + cumscore.size() - beat_period[beat_period.size()-1] ; + int startpoint = get_max_ind(tmp_vec) + + df_len - beat_period[beat_period.size()-1] ; // can happen if no results obtained earlier (e.g. input too short) - if (startpoint >= (int)backlink.size()) startpoint = backlink.size()-1; + if (startpoint >= int(backlink.size())) { + startpoint = int(backlink.size()) - 1; + } // USE BACKLINK TO GET EACH NEW BEAT (TOWARDS THE BEGINNING OF THE FILE) // BACKTRACKING FROM THE END TO THE BEGINNING.. MAKING SURE NOT TO GO BEFORE SAMPLE 0 i_vec_t ibeats; ibeats.push_back(startpoint); // std::cerr << "startpoint = " << startpoint << std::endl; - while (backlink[ibeats.back()] > 0) - { + while (backlink[ibeats.back()] > 0) { // std::cerr << "backlink[" << ibeats.back() << "] = " << backlink[ibeats.back()] << std::endl; int b = ibeats.back(); if (backlink[b] == b) break; // shouldn't happen... haha @@ -522,9 +490,8 @@ } // REVERSE SEQUENCE OF IBEATS AND STORE AS BEATS - for (unsigned int i=0; i<ibeats.size(); i++) - { - beats.push_back( static_cast<double>(ibeats[ibeats.size()-i-1]) ); + for (int i = 0; i < int(ibeats.size()); i++) { + beats.push_back(double(ibeats[ibeats.size() - i - 1])); } }