Mercurial > hg > qm-dsp
comparison dsp/tempotracking/TempoTrackV2.cpp @ 505:930b5b0f707d
Merge branch 'codestyle-and-tidy'
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 05 Jun 2019 12:55:15 +0100 |
parents | 162673c8f9de |
children |
comparison
equal
deleted
inserted
replaced
471:e3335cb213da | 505:930b5b0f707d |
---|---|
19 #include <cstdlib> | 19 #include <cstdlib> |
20 #include <iostream> | 20 #include <iostream> |
21 | 21 |
22 #include "maths/MathUtilities.h" | 22 #include "maths/MathUtilities.h" |
23 | 23 |
24 using std::vector; | |
25 | |
24 #define EPS 0.0000008 // just some arbitrary small number | 26 #define EPS 0.0000008 // just some arbitrary small number |
25 | 27 |
26 TempoTrackV2::TempoTrackV2(float rate, size_t increment) : | 28 TempoTrackV2::TempoTrackV2(float rate, int increment) : |
27 m_rate(rate), m_increment(increment) { } | 29 m_rate(rate), m_increment(increment) { |
30 } | |
31 | |
28 TempoTrackV2::~TempoTrackV2() { } | 32 TempoTrackV2::~TempoTrackV2() { } |
29 | 33 |
30 void | 34 void |
31 TempoTrackV2::filter_df(d_vec_t &df) | 35 TempoTrackV2::filter_df(d_vec_t &df) |
32 { | 36 { |
37 int df_len = int(df.size()); | |
38 | |
33 d_vec_t a(3); | 39 d_vec_t a(3); |
34 d_vec_t b(3); | 40 d_vec_t b(3); |
35 d_vec_t lp_df(df.size()); | 41 d_vec_t lp_df(df_len); |
36 | 42 |
37 //equivalent in matlab to [b,a] = butter(2,0.4); | 43 //equivalent in matlab to [b,a] = butter(2,0.4); |
38 a[0] = 1.0000; | 44 a[0] = 1.0000; |
39 a[1] = -0.3695; | 45 a[1] = -0.3695; |
40 a[2] = 0.1958; | 46 a[2] = 0.1958; |
47 double out1 = 0.; | 53 double out1 = 0.; |
48 double out2 = 0.; | 54 double out2 = 0.; |
49 | 55 |
50 | 56 |
51 // forwards filtering | 57 // forwards filtering |
52 for (unsigned int i = 0;i < df.size();i++) | 58 for (int i = 0; i < df_len; i++) { |
53 { | |
54 lp_df[i] = b[0]*df[i] + b[1]*inp1 + b[2]*inp2 - a[1]*out1 - a[2]*out2; | 59 lp_df[i] = b[0]*df[i] + b[1]*inp1 + b[2]*inp2 - a[1]*out1 - a[2]*out2; |
55 inp2 = inp1; | 60 inp2 = inp1; |
56 inp1 = df[i]; | 61 inp1 = df[i]; |
57 out2 = out1; | 62 out2 = out1; |
58 out1 = lp_df[i]; | 63 out1 = lp_df[i]; |
59 } | 64 } |
60 | 65 |
61 // copy forwards filtering to df... | 66 // copy forwards filtering to df... |
62 // but, time-reversed, ready for backwards filtering | 67 // but, time-reversed, ready for backwards filtering |
63 for (unsigned int i = 0;i < df.size();i++) | 68 for (int i = 0; i < df_len; i++) { |
64 { | 69 df[i] = lp_df[df_len - i - 1]; |
65 df[i] = lp_df[df.size()-i-1]; | 70 } |
66 } | 71 |
67 | 72 for (int i = 0; i < df_len; i++) { |
68 for (unsigned int i = 0;i < df.size();i++) | |
69 { | |
70 lp_df[i] = 0.; | 73 lp_df[i] = 0.; |
71 } | 74 } |
72 | 75 |
73 inp1 = 0.; inp2 = 0.; | 76 inp1 = 0.; inp2 = 0.; |
74 out1 = 0.; out2 = 0.; | 77 out1 = 0.; out2 = 0.; |
75 | 78 |
76 // backwards filetering on time-reversed df | 79 // backwards filetering on time-reversed df |
77 for (unsigned int i = 0;i < df.size();i++) | 80 for (int i = 0; i < df_len; i++) { |
78 { | |
79 lp_df[i] = b[0]*df[i] + b[1]*inp1 + b[2]*inp2 - a[1]*out1 - a[2]*out2; | 81 lp_df[i] = b[0]*df[i] + b[1]*inp1 + b[2]*inp2 - a[1]*out1 - a[2]*out2; |
80 inp2 = inp1; | 82 inp2 = inp1; |
81 inp1 = df[i]; | 83 inp1 = df[i]; |
82 out2 = out1; | 84 out2 = out1; |
83 out1 = lp_df[i]; | 85 out1 = lp_df[i]; |
84 } | 86 } |
85 | 87 |
86 // write the re-reversed (i.e. forward) version back to df | 88 // write the re-reversed (i.e. forward) version back to df |
87 for (unsigned int i = 0;i < df.size();i++) | 89 for (int i = 0; i < df_len; i++) { |
88 { | 90 df[i] = lp_df[df_len - i - 1]; |
89 df[i] = lp_df[df.size()-i-1]; | |
90 } | 91 } |
91 } | 92 } |
92 | 93 |
93 | 94 |
94 // MEPD 28/11/12 | 95 // MEPD 28/11/12 |
107 // calculate the acf, | 108 // calculate the acf, |
108 // then the rcf.. and then stick the rcfs as columns of a matrix | 109 // then the rcf.. and then stick the rcfs as columns of a matrix |
109 // then call viterbi decoding with weight vector and transition matrix | 110 // then call viterbi decoding with weight vector and transition matrix |
110 // and get best path | 111 // and get best path |
111 | 112 |
112 unsigned int wv_len = 128; | 113 int wv_len = 128; |
113 | 114 |
114 // MEPD 28/11/12 | 115 // MEPD 28/11/12 |
115 // the default value of inputtempo in the beat tracking plugin is 120 | 116 // the default value of inputtempo in the beat tracking plugin is 120 |
116 // so if the user specifies a different inputtempo, the rayparam will be updated | 117 // so if the user specifies a different inputtempo, the rayparam will be updated |
117 // accordingly. | 118 // accordingly. |
118 // note: 60*44100/512 is a magic number | 119 // note: 60*44100/512 is a magic number |
119 // this might (will?) break if a user specifies a different frame rate for the onset detection function | 120 // this might (will?) break if a user specifies a different frame rate for the onset detection function |
120 double rayparam = (60*44100/512)/inputtempo; | 121 double rayparam = (60*44100/512)/inputtempo; |
121 | 122 |
122 // these debug statements can be removed. | |
123 // std::cerr << "inputtempo" << inputtempo << std::endl; | |
124 // std::cerr << "rayparam" << rayparam << std::endl; | |
125 // std::cerr << "constraintempo" << constraintempo << std::endl; | |
126 | |
127 // make rayleigh weighting curve | 123 // make rayleigh weighting curve |
128 d_vec_t wv(wv_len); | 124 d_vec_t wv(wv_len); |
129 | 125 |
130 // check whether or not to use rayleigh weighting (if constraintempo is false) | 126 // check whether or not to use rayleigh weighting (if constraintempo is false) |
131 // or use gaussian weighting it (constraintempo is true) | 127 // or use gaussian weighting it (constraintempo is true) |
132 if (constraintempo) | 128 if (constraintempo) { |
133 { | 129 for (int i = 0; i < wv_len; i++) { |
134 for (unsigned int i=0; i<wv.size(); i++) | |
135 { | |
136 // MEPD 28/11/12 | 130 // MEPD 28/11/12 |
137 // do a gaussian weighting instead of rayleigh | 131 // do a gaussian weighting instead of rayleigh |
138 wv[i] = exp( (-1.*pow((static_cast<double> (i)-rayparam),2.)) / (2.*pow(rayparam/4.,2.)) ); | 132 wv[i] = exp( (-1.*pow((double(i)-rayparam),2.)) / (2.*pow(rayparam/4.,2.)) ); |
139 } | 133 } |
140 } | 134 } else { |
141 else | 135 for (int i = 0; i < wv_len; i++) { |
142 { | |
143 for (unsigned int i=0; i<wv.size(); i++) | |
144 { | |
145 // MEPD 28/11/12 | 136 // MEPD 28/11/12 |
146 // standard rayleigh weighting over periodicities | 137 // standard rayleigh weighting over periodicities |
147 wv[i] = (static_cast<double> (i) / pow(rayparam,2.)) * exp((-1.*pow(-static_cast<double> (i),2.)) / (2.*pow(rayparam,2.))); | 138 wv[i] = (double(i) / pow(rayparam,2.)) * exp((-1.*pow(-double(i),2.)) / (2.*pow(rayparam,2.))); |
148 } | 139 } |
149 } | 140 } |
150 | 141 |
151 // beat tracking frame size (roughly 6 seconds) and hop (1.5 seconds) | 142 // beat tracking frame size (roughly 6 seconds) and hop (1.5 seconds) |
152 unsigned int winlen = 512; | 143 int winlen = 512; |
153 unsigned int step = 128; | 144 int step = 128; |
154 | 145 |
155 // matrix to store output of comb filter bank, increment column of matrix at each frame | 146 // matrix to store output of comb filter bank, increment column of matrix at each frame |
156 d_mat_t rcfmat; | 147 d_mat_t rcfmat; |
157 int col_counter = -1; | 148 int col_counter = -1; |
149 int df_len = int(df.size()); | |
158 | 150 |
159 // main loop for beat period calculation | 151 // main loop for beat period calculation |
160 for (unsigned int i=0; i+winlen<df.size(); i+=step) | 152 for (int i = 0; i+winlen < df_len; i+=step) { |
161 { | 153 |
162 // get dfframe | 154 // get dfframe |
163 d_vec_t dfframe(winlen); | 155 d_vec_t dfframe(winlen); |
164 for (unsigned int k=0; k<winlen; k++) | 156 for (int k=0; k < winlen; k++) { |
165 { | |
166 dfframe[k] = df[i+k]; | 157 dfframe[k] = df[i+k]; |
167 } | 158 } |
168 // get rcf vector for current frame | 159 // get rcf vector for current frame |
169 d_vec_t rcf(wv_len); | 160 d_vec_t rcf(wv_len); |
170 get_rcf(dfframe,wv,rcf); | 161 get_rcf(dfframe,wv,rcf); |
171 | 162 |
172 rcfmat.push_back( d_vec_t() ); // adds a new column | 163 rcfmat.push_back( d_vec_t() ); // adds a new column |
173 col_counter++; | 164 col_counter++; |
174 for (unsigned int j=0; j<rcf.size(); j++) | 165 for (int j = 0; j < wv_len; j++) { |
175 { | |
176 rcfmat[col_counter].push_back( rcf[j] ); | 166 rcfmat[col_counter].push_back( rcf[j] ); |
177 } | 167 } |
178 } | 168 } |
179 | 169 |
180 // now call viterbi decoding function | 170 // now call viterbi decoding function |
193 | 183 |
194 d_vec_t dfframe(dfframe_in); | 184 d_vec_t dfframe(dfframe_in); |
195 | 185 |
196 MathUtilities::adaptiveThreshold(dfframe); | 186 MathUtilities::adaptiveThreshold(dfframe); |
197 | 187 |
198 d_vec_t acf(dfframe.size()); | 188 int dfframe_len = int(dfframe.size()); |
199 | 189 int rcf_len = int(rcf.size()); |
200 | 190 |
201 for (unsigned int lag=0; lag<dfframe.size(); lag++) | 191 d_vec_t acf(dfframe_len); |
202 { | 192 |
193 for (int lag = 0; lag < dfframe_len; lag++) { | |
203 double sum = 0.; | 194 double sum = 0.; |
204 double tmp = 0.; | 195 double tmp = 0.; |
205 | 196 |
206 for (unsigned int n=0; n<(dfframe.size()-lag); n++) | 197 for (int n = 0; n < (dfframe_len - lag); n++) { |
207 { | 198 tmp = dfframe[n] * dfframe[n + lag]; |
208 tmp = dfframe[n] * dfframe[n+lag]; | |
209 sum += tmp; | 199 sum += tmp; |
210 } | 200 } |
211 acf[lag] = static_cast<double> (sum/ (dfframe.size()-lag)); | 201 acf[lag] = double(sum/ (dfframe_len - lag)); |
212 } | 202 } |
213 | 203 |
214 // now apply comb filtering | 204 // now apply comb filtering |
215 int numelem = 4; | 205 int numelem = 4; |
216 | 206 |
217 for (unsigned int i = 2;i < rcf.size();i++) // max beat period | 207 for (int i = 2; i < rcf_len; i++) { // max beat period |
218 { | 208 for (int a = 1; a <= numelem; a++) { // number of comb elements |
219 for (int a = 1;a <= numelem;a++) // number of comb elements | 209 for (int b = 1-a; b <= a-1; b++) { // general state using normalisation of comb elements |
220 { | 210 rcf[i-1] += ( acf[(a*i+b)-1]*wv[i-1] ) / (2.*a-1.); // calculate value for comb filter row |
221 for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements | |
222 { | |
223 rcf[i-1] += ( acf[(a*i+b)-1]*wv[i-1] ) / (2.*a-1.); // calculate value for comb filter row | |
224 } | 211 } |
225 } | 212 } |
226 } | 213 } |
227 | 214 |
228 // apply adaptive threshold to rcf | 215 // apply adaptive threshold to rcf |
229 MathUtilities::adaptiveThreshold(rcf); | 216 MathUtilities::adaptiveThreshold(rcf); |
230 | 217 |
231 double rcfsum =0.; | 218 double rcfsum =0.; |
232 for (unsigned int i=0; i<rcf.size(); i++) | 219 for (int i = 0; i < rcf_len; i++) { |
233 { | |
234 rcf[i] += EPS ; | 220 rcf[i] += EPS ; |
235 rcfsum += rcf[i]; | 221 rcfsum += rcf[i]; |
236 } | 222 } |
237 | 223 |
238 // normalise rcf to sum to unity | 224 // normalise rcf to sum to unity |
239 for (unsigned int i=0; i<rcf.size(); i++) | 225 for (int i = 0; i < rcf_len; i++) { |
240 { | |
241 rcf[i] /= (rcfsum + EPS); | 226 rcf[i] /= (rcfsum + EPS); |
242 } | 227 } |
243 } | 228 } |
244 | 229 |
245 void | 230 void |
246 TempoTrackV2::viterbi_decode(const d_mat_t &rcfmat, const d_vec_t &wv, d_vec_t &beat_period, d_vec_t &tempi) | 231 TempoTrackV2::viterbi_decode(const d_mat_t &rcfmat, const d_vec_t &wv, d_vec_t &beat_period, d_vec_t &tempi) |
247 { | 232 { |
248 // following Kevin Murphy's Viterbi decoding to get best path of | 233 // following Kevin Murphy's Viterbi decoding to get best path of |
249 // beat periods through rfcmat | 234 // beat periods through rfcmat |
250 | 235 |
236 int wv_len = int(wv.size()); | |
237 | |
251 // make transition matrix | 238 // make transition matrix |
252 d_mat_t tmat; | 239 d_mat_t tmat; |
253 for (unsigned int i=0;i<wv.size();i++) | 240 for (int i = 0; i < wv_len; i++) { |
254 { | |
255 tmat.push_back ( d_vec_t() ); // adds a new column | 241 tmat.push_back ( d_vec_t() ); // adds a new column |
256 for (unsigned int j=0; j<wv.size(); j++) | 242 for (int j = 0; j < wv_len; j++) { |
257 { | |
258 tmat[i].push_back(0.); // fill with zeros initially | 243 tmat[i].push_back(0.); // fill with zeros initially |
259 } | 244 } |
260 } | 245 } |
261 | 246 |
262 // variance of Gaussians in transition matrix | 247 // variance of Gaussians in transition matrix |
263 // formed of Gaussians on diagonal - implies slow tempo change | 248 // formed of Gaussians on diagonal - implies slow tempo change |
264 double sigma = 8.; | 249 double sigma = 8.; |
265 // don't want really short beat periods, or really long ones | 250 // don't want really short beat periods, or really long ones |
266 for (unsigned int i=20;i <wv.size()-20; i++) | 251 for (int i = 20; i < wv_len - 20; i++) { |
267 { | 252 for (int j = 20; j < wv_len - 20; j++) { |
268 for (unsigned int j=20; j<wv.size()-20; j++) | 253 double mu = double(i); |
269 { | |
270 double mu = static_cast<double>(i); | |
271 tmat[i][j] = exp( (-1.*pow((j-mu),2.)) / (2.*pow(sigma,2.)) ); | 254 tmat[i][j] = exp( (-1.*pow((j-mu),2.)) / (2.*pow(sigma,2.)) ); |
272 } | 255 } |
273 } | 256 } |
274 | 257 |
275 // parameters for Viterbi decoding... this part is taken from | 258 // parameters for Viterbi decoding... this part is taken from |
276 // Murphy's matlab | 259 // Murphy's matlab |
277 | 260 |
278 d_mat_t delta; | 261 d_mat_t delta; |
279 i_mat_t psi; | 262 i_mat_t psi; |
280 for (unsigned int i=0;i <rcfmat.size(); i++) | 263 for (int i = 0; i < int(rcfmat.size()); i++) { |
281 { | 264 delta.push_back(d_vec_t()); |
282 delta.push_back( d_vec_t()); | 265 psi.push_back(i_vec_t()); |
283 psi.push_back( i_vec_t()); | 266 for (int j = 0; j < int(rcfmat[i].size()); j++) { |
284 for (unsigned int j=0; j<rcfmat[i].size(); j++) | |
285 { | |
286 delta[i].push_back(0.); // fill with zeros initially | 267 delta[i].push_back(0.); // fill with zeros initially |
287 psi[i].push_back(0); // fill with zeros initially | 268 psi[i].push_back(0); // fill with zeros initially |
288 } | 269 } |
289 } | 270 } |
290 | 271 |
291 | 272 int T = int(delta.size()); |
292 unsigned int T = delta.size(); | |
293 | 273 |
294 if (T < 2) return; // can't do anything at all meaningful | 274 if (T < 2) return; // can't do anything at all meaningful |
295 | 275 |
296 unsigned int Q = delta[0].size(); | 276 int Q = int(delta[0].size()); |
297 | 277 |
298 // initialize first column of delta | 278 // initialize first column of delta |
299 for (unsigned int j=0; j<Q; j++) | 279 for (int j = 0; j < Q; j++) { |
300 { | |
301 delta[0][j] = wv[j] * rcfmat[0][j]; | 280 delta[0][j] = wv[j] * rcfmat[0][j]; |
302 psi[0][j] = 0; | 281 psi[0][j] = 0; |
303 } | 282 } |
304 | 283 |
305 double deltasum = 0.; | 284 double deltasum = 0.; |
306 for (unsigned int i=0; i<Q; i++) | 285 for (int i = 0; i < Q; i++) { |
307 { | |
308 deltasum += delta[0][i]; | 286 deltasum += delta[0][i]; |
309 } | 287 } |
310 for (unsigned int i=0; i<Q; i++) | 288 for (int i = 0; i < Q; i++) { |
311 { | |
312 delta[0][i] /= (deltasum + EPS); | 289 delta[0][i] /= (deltasum + EPS); |
313 } | 290 } |
314 | 291 |
315 | 292 for (int t=1; t < T; t++) |
316 for (unsigned int t=1; t<T; t++) | |
317 { | 293 { |
318 d_vec_t tmp_vec(Q); | 294 d_vec_t tmp_vec(Q); |
319 | 295 |
320 for (unsigned int j=0; j<Q; j++) | 296 for (int j = 0; j < Q; j++) { |
321 { | 297 for (int i = 0; i < Q; i++) { |
322 for (unsigned int i=0; i<Q; i++) | |
323 { | |
324 tmp_vec[i] = delta[t-1][i] * tmat[j][i]; | 298 tmp_vec[i] = delta[t-1][i] * tmat[j][i]; |
325 } | 299 } |
326 | 300 |
327 delta[t][j] = get_max_val(tmp_vec); | 301 delta[t][j] = get_max_val(tmp_vec); |
328 | 302 |
331 delta[t][j] *= rcfmat[t][j]; | 305 delta[t][j] *= rcfmat[t][j]; |
332 } | 306 } |
333 | 307 |
334 // normalise current delta column | 308 // normalise current delta column |
335 double deltasum = 0.; | 309 double deltasum = 0.; |
336 for (unsigned int i=0; i<Q; i++) | 310 for (int i = 0; i < Q; i++) { |
337 { | |
338 deltasum += delta[t][i]; | 311 deltasum += delta[t][i]; |
339 } | 312 } |
340 for (unsigned int i=0; i<Q; i++) | 313 for (int i = 0; i < Q; i++) { |
341 { | |
342 delta[t][i] /= (deltasum + EPS); | 314 delta[t][i] /= (deltasum + EPS); |
343 } | 315 } |
344 } | 316 } |
345 | 317 |
346 i_vec_t bestpath(T); | 318 i_vec_t bestpath(T); |
347 d_vec_t tmp_vec(Q); | 319 d_vec_t tmp_vec(Q); |
348 for (unsigned int i=0; i<Q; i++) | 320 for (int i = 0; i < Q; i++) { |
349 { | |
350 tmp_vec[i] = delta[T-1][i]; | 321 tmp_vec[i] = delta[T-1][i]; |
351 } | 322 } |
352 | 323 |
353 // find starting point - best beat period for "last" frame | 324 // find starting point - best beat period for "last" frame |
354 bestpath[T-1] = get_max_ind(tmp_vec); | 325 bestpath[T-1] = get_max_ind(tmp_vec); |
355 | 326 |
356 // backtrace through index of maximum values in psi | 327 // backtrace through index of maximum values in psi |
357 for (unsigned int t=T-2; t>0 ;t--) | 328 for (int t=T-2; t>0 ;t--) { |
358 { | |
359 bestpath[t] = psi[t+1][bestpath[t+1]]; | 329 bestpath[t] = psi[t+1][bestpath[t+1]]; |
360 } | 330 } |
361 | 331 |
362 // weird but necessary hack -- couldn't get above loop to terminate at t >= 0 | 332 // weird but necessary hack -- couldn't get above loop to terminate at t >= 0 |
363 bestpath[0] = psi[1][bestpath[1]]; | 333 bestpath[0] = psi[1][bestpath[1]]; |
364 | 334 |
365 unsigned int lastind = 0; | 335 int lastind = 0; |
366 for (unsigned int i=0; i<T; i++) | 336 for (int i = 0; i < T; i++) { |
367 { | 337 int step = 128; |
368 unsigned int step = 128; | 338 for (int j = 0; j < step; j++) { |
369 for (unsigned int j=0; j<step; j++) | |
370 { | |
371 lastind = i*step+j; | 339 lastind = i*step+j; |
372 beat_period[lastind] = bestpath[i]; | 340 beat_period[lastind] = bestpath[i]; |
373 } | 341 } |
374 // std::cerr << "bestpath[" << i << "] = " << bestpath[i] << " (used for beat_periods " << i*step << " to " << i*step+step-1 << ")" << std::endl; | 342 // std::cerr << "bestpath[" << i << "] = " << bestpath[i] << " (used for beat_periods " << i*step << " to " << i*step+step-1 << ")" << std::endl; |
375 } | 343 } |
376 | 344 |
377 //fill in the last values... | 345 // fill in the last values... |
378 for (unsigned int i=lastind; i<beat_period.size(); i++) | 346 for (int i = lastind; i < int(beat_period.size()); i++) { |
379 { | |
380 beat_period[i] = beat_period[lastind]; | 347 beat_period[i] = beat_period[lastind]; |
381 } | 348 } |
382 | 349 |
383 for (unsigned int i = 0; i < beat_period.size(); i++) | 350 for (int i = 0; i < int(beat_period.size()); i++) { |
384 { | |
385 tempi.push_back((60. * m_rate / m_increment)/beat_period[i]); | 351 tempi.push_back((60. * m_rate / m_increment)/beat_period[i]); |
386 } | 352 } |
387 } | 353 } |
388 | 354 |
389 double | 355 double |
390 TempoTrackV2::get_max_val(const d_vec_t &df) | 356 TempoTrackV2::get_max_val(const d_vec_t &df) |
391 { | 357 { |
392 double maxval = 0.; | 358 double maxval = 0.; |
393 for (unsigned int i=0; i<df.size(); i++) | 359 int df_len = int(df.size()); |
394 { | 360 |
395 if (maxval < df[i]) | 361 for (int i = 0; i < df_len; i++) { |
396 { | 362 if (maxval < df[i]) { |
397 maxval = df[i]; | 363 maxval = df[i]; |
398 } | 364 } |
399 } | 365 } |
400 | 366 |
401 return maxval; | 367 return maxval; |
404 int | 370 int |
405 TempoTrackV2::get_max_ind(const d_vec_t &df) | 371 TempoTrackV2::get_max_ind(const d_vec_t &df) |
406 { | 372 { |
407 double maxval = 0.; | 373 double maxval = 0.; |
408 int ind = 0; | 374 int ind = 0; |
409 for (unsigned int i=0; i<df.size(); i++) | 375 int df_len = int(df.size()); |
410 { | 376 |
411 if (maxval < df[i]) | 377 for (int i = 0; i < df_len; i++) { |
412 { | 378 if (maxval < df[i]) { |
413 maxval = df[i]; | 379 maxval = df[i]; |
414 ind = i; | 380 ind = i; |
415 } | 381 } |
416 } | 382 } |
417 | 383 |
420 | 386 |
421 void | 387 void |
422 TempoTrackV2::normalise_vec(d_vec_t &df) | 388 TempoTrackV2::normalise_vec(d_vec_t &df) |
423 { | 389 { |
424 double sum = 0.; | 390 double sum = 0.; |
425 for (unsigned int i=0; i<df.size(); i++) | 391 int df_len = int(df.size()); |
426 { | 392 |
393 for (int i = 0; i < df_len; i++) { | |
427 sum += df[i]; | 394 sum += df[i]; |
428 } | 395 } |
429 | 396 |
430 for (unsigned int i=0; i<df.size(); i++) | 397 for (int i = 0; i < df_len; i++) { |
431 { | |
432 df[i]/= (sum + EPS); | 398 df[i]/= (sum + EPS); |
433 } | 399 } |
434 } | 400 } |
435 | 401 |
436 // MEPD 28/11/12 | 402 // MEPD 28/11/12 |
442 const vector<double> &beat_period, | 408 const vector<double> &beat_period, |
443 vector<double> &beats, double alpha, double tightness) | 409 vector<double> &beats, double alpha, double tightness) |
444 { | 410 { |
445 if (df.empty() || beat_period.empty()) return; | 411 if (df.empty() || beat_period.empty()) return; |
446 | 412 |
447 d_vec_t cumscore(df.size()); // store cumulative score | 413 int df_len = int(df.size()); |
448 i_vec_t backlink(df.size()); // backlink (stores best beat locations at each time instant) | 414 |
449 d_vec_t localscore(df.size()); // localscore, for now this is the same as the detection function | 415 d_vec_t cumscore(df_len); // store cumulative score |
450 | 416 i_vec_t backlink(df_len); // backlink (stores best beat locations at each time instant) |
451 for (unsigned int i=0; i<df.size(); i++) | 417 d_vec_t localscore(df_len); // localscore, for now this is the same as the detection function |
452 { | 418 |
419 for (int i = 0; i < df_len; i++) { | |
453 localscore[i] = df[i]; | 420 localscore[i] = df[i]; |
454 backlink[i] = -1; | 421 backlink[i] = -1; |
455 } | 422 } |
456 | 423 |
457 //double tightness = 4.; | 424 //double tightness = 4.; |
460 // debug statements that can be removed. | 427 // debug statements that can be removed. |
461 // std::cerr << "alpha" << alpha << std::endl; | 428 // std::cerr << "alpha" << alpha << std::endl; |
462 // std::cerr << "tightness" << tightness << std::endl; | 429 // std::cerr << "tightness" << tightness << std::endl; |
463 | 430 |
464 // main loop | 431 // main loop |
465 for (unsigned int i=0; i<localscore.size(); i++) | 432 for (int i = 0; i < df_len; i++) { |
466 { | 433 |
467 int prange_min = -2*beat_period[i]; | 434 int prange_min = -2*beat_period[i]; |
468 int prange_max = round(-0.5*beat_period[i]); | 435 int prange_max = round(-0.5*beat_period[i]); |
469 | 436 |
470 // transition range | 437 // transition range |
471 d_vec_t txwt (prange_max - prange_min + 1); | 438 int txwt_len = prange_max - prange_min + 1; |
472 d_vec_t scorecands (txwt.size()); | 439 d_vec_t txwt (txwt_len); |
473 | 440 d_vec_t scorecands (txwt_len); |
474 for (unsigned int j=0;j<txwt.size();j++) | 441 |
475 { | 442 for (int j = 0; j < txwt_len; j++) { |
476 double mu = static_cast<double> (beat_period[i]); | 443 |
444 double mu = double(beat_period[i]); | |
477 txwt[j] = exp( -0.5*pow(tightness * log((round(2*mu)-j)/mu),2)); | 445 txwt[j] = exp( -0.5*pow(tightness * log((round(2*mu)-j)/mu),2)); |
478 | 446 |
479 // IF IN THE ALLOWED RANGE, THEN LOOK AT CUMSCORE[I+PRANGE_MIN+J | 447 // IF IN THE ALLOWED RANGE, THEN LOOK AT CUMSCORE[I+PRANGE_MIN+J |
480 // ELSE LEAVE AT DEFAULT VALUE FROM INITIALISATION: D_VEC_T SCORECANDS (TXWT.SIZE()); | 448 // ELSE LEAVE AT DEFAULT VALUE FROM INITIALISATION: D_VEC_T SCORECANDS (TXWT.SIZE()); |
481 | 449 |
482 int cscore_ind = i+prange_min+j; | 450 int cscore_ind = i + prange_min + j; |
483 if (cscore_ind >= 0) | 451 if (cscore_ind >= 0) { |
484 { | |
485 scorecands[j] = txwt[j] * cumscore[cscore_ind]; | 452 scorecands[j] = txwt[j] * cumscore[cscore_ind]; |
486 } | 453 } |
487 } | 454 } |
488 | 455 |
489 // find max value and index of maximum value | 456 // find max value and index of maximum value |
496 // std::cerr << "backlink[" << i << "] <= " << backlink[i] << std::endl; | 463 // std::cerr << "backlink[" << i << "] <= " << backlink[i] << std::endl; |
497 } | 464 } |
498 | 465 |
499 // STARTING POINT, I.E. LAST BEAT.. PICK A STRONG POINT IN cumscore VECTOR | 466 // STARTING POINT, I.E. LAST BEAT.. PICK A STRONG POINT IN cumscore VECTOR |
500 d_vec_t tmp_vec; | 467 d_vec_t tmp_vec; |
501 for (unsigned int i=cumscore.size() - beat_period[beat_period.size()-1] ; i<cumscore.size(); i++) | 468 for (int i = df_len - beat_period[beat_period.size()-1] ; i < df_len; i++) { |
502 { | |
503 tmp_vec.push_back(cumscore[i]); | 469 tmp_vec.push_back(cumscore[i]); |
504 } | 470 } |
505 | 471 |
506 int startpoint = get_max_ind(tmp_vec) + cumscore.size() - beat_period[beat_period.size()-1] ; | 472 int startpoint = get_max_ind(tmp_vec) + |
473 df_len - beat_period[beat_period.size()-1] ; | |
507 | 474 |
508 // can happen if no results obtained earlier (e.g. input too short) | 475 // can happen if no results obtained earlier (e.g. input too short) |
509 if (startpoint >= (int)backlink.size()) startpoint = backlink.size()-1; | 476 if (startpoint >= int(backlink.size())) { |
477 startpoint = int(backlink.size()) - 1; | |
478 } | |
510 | 479 |
511 // USE BACKLINK TO GET EACH NEW BEAT (TOWARDS THE BEGINNING OF THE FILE) | 480 // USE BACKLINK TO GET EACH NEW BEAT (TOWARDS THE BEGINNING OF THE FILE) |
512 // BACKTRACKING FROM THE END TO THE BEGINNING.. MAKING SURE NOT TO GO BEFORE SAMPLE 0 | 481 // BACKTRACKING FROM THE END TO THE BEGINNING.. MAKING SURE NOT TO GO BEFORE SAMPLE 0 |
513 i_vec_t ibeats; | 482 i_vec_t ibeats; |
514 ibeats.push_back(startpoint); | 483 ibeats.push_back(startpoint); |
515 // std::cerr << "startpoint = " << startpoint << std::endl; | 484 // std::cerr << "startpoint = " << startpoint << std::endl; |
516 while (backlink[ibeats.back()] > 0) | 485 while (backlink[ibeats.back()] > 0) { |
517 { | |
518 // std::cerr << "backlink[" << ibeats.back() << "] = " << backlink[ibeats.back()] << std::endl; | 486 // std::cerr << "backlink[" << ibeats.back() << "] = " << backlink[ibeats.back()] << std::endl; |
519 int b = ibeats.back(); | 487 int b = ibeats.back(); |
520 if (backlink[b] == b) break; // shouldn't happen... haha | 488 if (backlink[b] == b) break; // shouldn't happen... haha |
521 ibeats.push_back(backlink[b]); | 489 ibeats.push_back(backlink[b]); |
522 } | 490 } |
523 | 491 |
524 // REVERSE SEQUENCE OF IBEATS AND STORE AS BEATS | 492 // REVERSE SEQUENCE OF IBEATS AND STORE AS BEATS |
525 for (unsigned int i=0; i<ibeats.size(); i++) | 493 for (int i = 0; i < int(ibeats.size()); i++) { |
526 { | 494 beats.push_back(double(ibeats[ibeats.size() - i - 1])); |
527 beats.push_back( static_cast<double>(ibeats[ibeats.size()-i-1]) ); | 495 } |
528 } | 496 } |
529 } | 497 |
530 | 498 |
531 |