annotate dsp/onsets/DetectionFunction.cpp @ 106:f976d7609700 mirex2013

Restore the accidentally-removed line in which all the work happens! Fixes onset detector
author Chris Cannam
date Thu, 05 Sep 2013 12:33:35 +0100
parents 37449f085a4c
children f3c69325cca2
rev   line source
cannam@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
cannam@0 2
cannam@0 3 /*
cannam@0 4 QM DSP Library
cannam@0 5
cannam@0 6 Centre for Digital Music, Queen Mary, University of London.
Chris@84 7 This file 2005-2006 Christian Landone.
Chris@84 8
Chris@84 9 This program is free software; you can redistribute it and/or
Chris@84 10 modify it under the terms of the GNU General Public License as
Chris@84 11 published by the Free Software Foundation; either version 2 of the
Chris@84 12 License, or (at your option) any later version. See the file
Chris@84 13 COPYING included with this distribution for more information.
cannam@0 14 */
cannam@0 15
cannam@0 16 #include "DetectionFunction.h"
cannam@47 17 #include <cstring>
cannam@0 18
cannam@0 19 //////////////////////////////////////////////////////////////////////
cannam@0 20 // Construction/Destruction
cannam@0 21 //////////////////////////////////////////////////////////////////////
cannam@0 22
cannam@0 23 DetectionFunction::DetectionFunction( DFConfig Config ) :
cannam@0 24 m_window(0)
cannam@0 25 {
cannam@2 26 m_magHistory = NULL;
cannam@2 27 m_phaseHistory = NULL;
cannam@2 28 m_phaseHistoryOld = NULL;
cannam@14 29 m_magPeaks = NULL;
cannam@0 30
cannam@0 31 initialise( Config );
cannam@0 32 }
cannam@0 33
cannam@0 34 DetectionFunction::~DetectionFunction()
cannam@0 35 {
cannam@0 36 deInitialise();
cannam@0 37 }
cannam@0 38
cannam@0 39
cannam@0 40 void DetectionFunction::initialise( DFConfig Config )
cannam@0 41 {
cannam@0 42 m_dataLength = Config.frameLength;
cannam@0 43 m_halfLength = m_dataLength/2;
cannam@14 44
cannam@0 45 m_DFType = Config.DFType;
cannam@13 46 m_stepSize = Config.stepSize;
cannam@0 47
cannam@14 48 m_whiten = Config.adaptiveWhitening;
cannam@14 49 m_whitenRelaxCoeff = Config.whiteningRelaxCoeff;
cannam@14 50 m_whitenFloor = Config.whiteningFloor;
cannam@14 51 if (m_whitenRelaxCoeff < 0) m_whitenRelaxCoeff = 0.9997;
cannam@14 52 if (m_whitenFloor < 0) m_whitenFloor = 0.01;
cannam@14 53
cannam@2 54 m_magHistory = new double[ m_halfLength ];
cannam@2 55 memset(m_magHistory,0, m_halfLength*sizeof(double));
cannam@0 56
cannam@2 57 m_phaseHistory = new double[ m_halfLength ];
cannam@2 58 memset(m_phaseHistory,0, m_halfLength*sizeof(double));
cannam@0 59
cannam@2 60 m_phaseHistoryOld = new double[ m_halfLength ];
cannam@2 61 memset(m_phaseHistoryOld,0, m_halfLength*sizeof(double));
cannam@0 62
cannam@14 63 m_magPeaks = new double[ m_halfLength ];
cannam@14 64 memset(m_magPeaks,0, m_halfLength*sizeof(double));
cannam@14 65
cannam@64 66 // See note in process(const double *) below
cannam@64 67 int actualLength = MathUtilities::previousPowerOfTwo(m_dataLength);
cannam@64 68 m_phaseVoc = new PhaseVocoder(actualLength);
cannam@0 69
cannam@0 70 m_DFWindowedFrame = new double[ m_dataLength ];
cannam@0 71 m_magnitude = new double[ m_halfLength ];
cannam@0 72 m_thetaAngle = new double[ m_halfLength ];
cannam@0 73
cannam@0 74 m_window = new Window<double>(HanningWindow, m_dataLength);
cannam@0 75 }
cannam@0 76
cannam@0 77 void DetectionFunction::deInitialise()
cannam@0 78 {
cannam@2 79 delete [] m_magHistory ;
cannam@2 80 delete [] m_phaseHistory ;
cannam@2 81 delete [] m_phaseHistoryOld ;
cannam@14 82 delete [] m_magPeaks ;
cannam@0 83
cannam@0 84 delete m_phaseVoc;
cannam@0 85
cannam@0 86 delete [] m_DFWindowedFrame;
cannam@0 87 delete [] m_magnitude;
cannam@0 88 delete [] m_thetaAngle;
cannam@0 89
cannam@0 90 delete m_window;
cannam@0 91 }
cannam@0 92
cannam@55 93 double DetectionFunction::process( const double *TDomain )
cannam@0 94 {
cannam@0 95 m_window->cut( TDomain, m_DFWindowedFrame );
cannam@55 96
cannam@55 97 // Our own FFT implementation supports power-of-two sizes only.
cannam@55 98 // If we have to use this implementation (as opposed to the
cannam@55 99 // version of process() below that operates on frequency domain
cannam@55 100 // data directly), we will have to use the next smallest power of
cannam@55 101 // two from the block size. Results may vary accordingly!
cannam@55 102
Chris@106 103 int actualLength = MathUtilities::previousPowerOfTwo((int)m_dataLength);
cannam@55 104
Chris@102 105 if (actualLength != (int)m_dataLength) {
cannam@55 106 // Pre-fill mag and phase vectors with zero, as the FFT output
cannam@55 107 // will not fill the arrays
Chris@102 108 for (int i = actualLength/2; i < (int)m_dataLength/2; ++i) {
cannam@55 109 m_magnitude[i] = 0;
cannam@55 110 m_thetaAngle[0] = 0;
cannam@55 111 }
cannam@55 112 }
cannam@55 113
cannam@64 114 m_phaseVoc->process(m_DFWindowedFrame, m_magnitude, m_thetaAngle);
cannam@0 115
cannam@14 116 if (m_whiten) whiten();
cannam@14 117
cannam@2 118 return runDF();
cannam@2 119 }
cannam@2 120
cannam@55 121 double DetectionFunction::process( const double *magnitudes, const double *phases )
cannam@2 122 {
cannam@2 123 for (size_t i = 0; i < m_halfLength; ++i) {
cannam@2 124 m_magnitude[i] = magnitudes[i];
cannam@2 125 m_thetaAngle[i] = phases[i];
cannam@2 126 }
cannam@2 127
cannam@14 128 if (m_whiten) whiten();
cannam@14 129
cannam@2 130 return runDF();
cannam@2 131 }
cannam@2 132
cannam@14 133 void DetectionFunction::whiten()
cannam@14 134 {
cannam@14 135 for (unsigned int i = 0; i < m_halfLength; ++i) {
cannam@14 136 double m = m_magnitude[i];
cannam@14 137 if (m < m_magPeaks[i]) {
cannam@14 138 m = m + (m_magPeaks[i] - m) * m_whitenRelaxCoeff;
cannam@14 139 }
cannam@14 140 if (m < m_whitenFloor) m = m_whitenFloor;
cannam@14 141 m_magPeaks[i] = m;
cannam@14 142 m_magnitude[i] /= m;
cannam@14 143 }
cannam@14 144 }
cannam@14 145
cannam@2 146 double DetectionFunction::runDF()
cannam@2 147 {
cannam@2 148 double retVal = 0;
cannam@2 149
cannam@0 150 switch( m_DFType )
cannam@0 151 {
cannam@0 152 case DF_HFC:
cannam@0 153 retVal = HFC( m_halfLength, m_magnitude);
cannam@0 154 break;
cannam@0 155
cannam@13 156 case DF_SPECDIFF:
cannam@0 157 retVal = specDiff( m_halfLength, m_magnitude);
cannam@0 158 break;
cannam@0 159
cannam@0 160 case DF_PHASEDEV:
cannam@14 161 retVal = phaseDev( m_halfLength, m_thetaAngle);
cannam@0 162 break;
cannam@0 163
cannam@0 164 case DF_COMPLEXSD:
cannam@0 165 retVal = complexSD( m_halfLength, m_magnitude, m_thetaAngle);
cannam@0 166 break;
cannam@12 167
cannam@12 168 case DF_BROADBAND:
cannam@14 169 retVal = broadband( m_halfLength, m_magnitude);
cannam@14 170 break;
cannam@0 171 }
cannam@0 172
cannam@0 173 return retVal;
cannam@0 174 }
cannam@0 175
cannam@0 176 double DetectionFunction::HFC(unsigned int length, double *src)
cannam@0 177 {
cannam@0 178 unsigned int i;
cannam@0 179 double val = 0;
cannam@0 180
cannam@0 181 for( i = 0; i < length; i++)
cannam@0 182 {
cannam@0 183 val += src[ i ] * ( i + 1);
cannam@0 184 }
cannam@0 185 return val;
cannam@0 186 }
cannam@0 187
cannam@0 188 double DetectionFunction::specDiff(unsigned int length, double *src)
cannam@0 189 {
cannam@0 190 unsigned int i;
cannam@0 191 double val = 0.0;
cannam@0 192 double temp = 0.0;
cannam@0 193 double diff = 0.0;
cannam@0 194
cannam@0 195 for( i = 0; i < length; i++)
cannam@0 196 {
cannam@2 197 temp = fabs( (src[ i ] * src[ i ]) - (m_magHistory[ i ] * m_magHistory[ i ]) );
cannam@0 198
cannam@0 199 diff= sqrt(temp);
cannam@0 200
cannam@13 201 // (See note in phaseDev below.)
cannam@13 202
cannam@13 203 val += diff;
cannam@0 204
cannam@2 205 m_magHistory[ i ] = src[ i ];
cannam@0 206 }
cannam@0 207
cannam@0 208 return val;
cannam@0 209 }
cannam@0 210
cannam@0 211
cannam@14 212 double DetectionFunction::phaseDev(unsigned int length, double *srcPhase)
cannam@0 213 {
cannam@0 214 unsigned int i;
cannam@0 215 double tmpPhase = 0;
cannam@0 216 double tmpVal = 0;
cannam@0 217 double val = 0;
cannam@0 218
cannam@0 219 double dev = 0;
cannam@0 220
cannam@0 221 for( i = 0; i < length; i++)
cannam@0 222 {
cannam@2 223 tmpPhase = (srcPhase[ i ]- 2*m_phaseHistory[ i ]+m_phaseHistoryOld[ i ]);
cannam@0 224 dev = MathUtilities::princarg( tmpPhase );
cannam@13 225
cannam@13 226 // A previous version of this code only counted the value here
cannam@13 227 // if the magnitude exceeded 0.1. My impression is that
cannam@13 228 // doesn't greatly improve the results for "loud" music (so
cannam@13 229 // long as the peak picker is reasonably sophisticated), but
cannam@13 230 // does significantly damage its ability to work with quieter
cannam@13 231 // music, so I'm removing it and counting the result always.
cannam@13 232 // Same goes for the spectral difference measure above.
cannam@0 233
cannam@13 234 tmpVal = fabs(dev);
cannam@13 235 val += tmpVal ;
cannam@0 236
cannam@2 237 m_phaseHistoryOld[ i ] = m_phaseHistory[ i ] ;
cannam@2 238 m_phaseHistory[ i ] = srcPhase[ i ];
cannam@0 239 }
cannam@0 240
cannam@0 241
cannam@0 242 return val;
cannam@0 243 }
cannam@0 244
cannam@0 245
cannam@0 246 double DetectionFunction::complexSD(unsigned int length, double *srcMagnitude, double *srcPhase)
cannam@0 247 {
cannam@0 248 unsigned int i;
cannam@0 249 double val = 0;
cannam@0 250 double tmpPhase = 0;
cannam@0 251 double tmpReal = 0;
cannam@0 252 double tmpImag = 0;
cannam@0 253
cannam@0 254 double dev = 0;
cannam@0 255 ComplexData meas = ComplexData( 0, 0 );
cannam@2 256 ComplexData j = ComplexData( 0, 1 );
cannam@0 257
cannam@0 258 for( i = 0; i < length; i++)
cannam@0 259 {
cannam@2 260 tmpPhase = (srcPhase[ i ]- 2*m_phaseHistory[ i ]+m_phaseHistoryOld[ i ]);
cannam@0 261 dev= MathUtilities::princarg( tmpPhase );
cannam@0 262
cannam@2 263 meas = m_magHistory[i] - ( srcMagnitude[ i ] * exp( j * dev) );
cannam@0 264
cannam@0 265 tmpReal = real( meas );
cannam@0 266 tmpImag = imag( meas );
cannam@0 267
cannam@0 268 val += sqrt( (tmpReal * tmpReal) + (tmpImag * tmpImag) );
cannam@0 269
cannam@2 270 m_phaseHistoryOld[ i ] = m_phaseHistory[ i ] ;
cannam@2 271 m_phaseHistory[ i ] = srcPhase[ i ];
cannam@2 272 m_magHistory[ i ] = srcMagnitude[ i ];
cannam@0 273 }
cannam@0 274
cannam@0 275 return val;
cannam@0 276 }
cannam@0 277
cannam@14 278 double DetectionFunction::broadband(unsigned int length, double *src)
cannam@12 279 {
cannam@12 280 double val = 0;
cannam@12 281 for (unsigned int i = 0; i < length; ++i) {
cannam@14 282 double sqrmag = src[i] * src[i];
cannam@12 283 if (m_magHistory[i] > 0.0) {
cannam@12 284 double diff = 10.0 * log10(sqrmag / m_magHistory[i]);
cannam@12 285 if (diff > m_dbRise) val = val + 1;
cannam@12 286 }
cannam@12 287 m_magHistory[i] = sqrmag;
cannam@12 288 }
cannam@12 289 return val;
cannam@12 290 }
cannam@12 291
cannam@0 292 double* DetectionFunction::getSpectrumMagnitude()
cannam@0 293 {
cannam@0 294 return m_magnitude;
cannam@0 295 }
cannam@0 296