annotate dsp/maths/Histogram.h @ 0:d7116e3183f8

* Queen Mary C++ DSP library
author cannam
date Wed, 05 Apr 2006 17:35:59 +0000
parents
children 14839f9a616e
rev   line source
cannam@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
cannam@0 2
cannam@0 3 // Histogram.h: interface for the THistogram class.
cannam@0 4 //
cannam@0 5 //////////////////////////////////////////////////////////////////////
cannam@0 6
cannam@0 7
cannam@0 8 #ifndef HISTOGRAM_H
cannam@0 9 #define HISTOGRAM_H
cannam@0 10
cannam@0 11
cannam@0 12 #include <valarray>
cannam@0 13
cannam@0 14 /*! \brief A histogram class
cannam@0 15
cannam@0 16 This class computes the histogram of a vector.
cannam@0 17
cannam@0 18 \par Template parameters
cannam@0 19
cannam@0 20 - T type of input data (can be any: float, double, int, UINT, etc...)
cannam@0 21 - TOut type of output data: float or double. (default is double)
cannam@0 22
cannam@0 23 \par Moments:
cannam@0 24
cannam@0 25 The moments (average, standard deviation, skewness, etc.) are computed using
cannam@0 26 the algorithm of the Numerical recipies (see Numerical recipies in C, Chapter 14.1, pg 613).
cannam@0 27
cannam@0 28 \par Example:
cannam@0 29
cannam@0 30 This example shows the typical use of the class:
cannam@0 31 \code
cannam@0 32 // a vector containing the data
cannam@0 33 vector<float> data;
cannam@0 34 // Creating histogram using float data and with 101 containers,
cannam@0 35 THistogram<float> histo(101);
cannam@0 36 // computing the histogram
cannam@0 37 histo.compute(data);
cannam@0 38 \endcode
cannam@0 39
cannam@0 40 Once this is done, you can get a vector with the histogram or the normalized histogram (such that it's area is 1):
cannam@0 41 \code
cannam@0 42 // getting normalized histogram
cannam@0 43 vector<float> v=histo.getNormalizedHistogram();
cannam@0 44 \endcode
cannam@0 45
cannam@0 46 \par Reference
cannam@0 47
cannam@0 48 Equally spaced acsissa function integration (used in #GetArea): Numerical Recipies in C, Chapter 4.1, pg 130.
cannam@0 49
cannam@0 50 \author Jonathan de Halleux, dehalleux@auto.ucl.ac.be, 2002
cannam@0 51 */
cannam@0 52
cannam@0 53 template<class T, class TOut = double>
cannam@0 54 class THistogram
cannam@0 55 {
cannam@0 56 public:
cannam@0 57 //! \name Constructors
cannam@0 58 //@{
cannam@0 59 /*! Default constructor
cannam@0 60 \param counters the number of histogram containers (default value is 10)
cannam@0 61 */
cannam@0 62 THistogram(unsigned int counters = 10);
cannam@0 63 virtual ~THistogram() { clear();};
cannam@0 64 //@}
cannam@0 65
cannam@0 66 //! \name Histogram computation, update
cannam@0 67 //@{
cannam@0 68 /*! Computes histogram of vector v
cannam@0 69 \param v vector to compute histogram
cannam@0 70 \param computeMinMax set to true if min/max of v have to be used to get the histogram limits
cannam@0 71
cannam@0 72 This function computes the histogram of v and stores it internally.
cannam@0 73 \sa Update, GeTHistogram
cannam@0 74 */
cannam@0 75 void compute( const std::vector<T>& v, bool computeMinMax = true);
cannam@0 76 //! Update histogram with the vector v
cannam@0 77 void update( const std::vector<T>& v);
cannam@0 78 //! Update histogram with t
cannam@0 79 void update( const T& t);
cannam@0 80 //@}
cannam@0 81
cannam@0 82 //! \name Resetting functions
cannam@0 83 //@{
cannam@0 84 //! Resize the histogram. Warning this function clear the histogram.
cannam@0 85 void resize( unsigned int counters );
cannam@0 86 //! Clears the histogram
cannam@0 87 void clear() { m_counters.clear();};
cannam@0 88 //@}
cannam@0 89
cannam@0 90 //! \name Setters
cannam@0 91 //@{
cannam@0 92 /*! This function sets the minimum of the histogram spectrum.
cannam@0 93 The spectrum is not recomputed, use it with care
cannam@0 94 */
cannam@0 95 void setMinSpectrum( const T& min ) { m_min = min; computeStep();};
cannam@0 96 /*! This function sets the minimum of the histogram spectrum.
cannam@0 97 The spectrum is not recomputed, use it with care
cannam@0 98 */
cannam@0 99 void setMaxSpectrum( const T& max ) { m_max = max; computeStep();};
cannam@0 100 //@}
cannam@0 101 //! \name Getters
cannam@0 102 //@{
cannam@0 103 //! return minimum of histogram spectrum
cannam@0 104 const T& getMinSpectrum() const { return m_min;};
cannam@0 105 //! return maximum of histogram spectrum
cannam@0 106 const T& getMaxSpectrum() const { return m_max;};
cannam@0 107 //! return step size of histogram containers
cannam@0 108 TOut getStep() const { return m_step;};
cannam@0 109 //! return number of points in histogram
cannam@0 110 unsigned int getSum() const;
cannam@0 111 /*! \brief returns area under the histogram
cannam@0 112
cannam@0 113 The Simpson rule is used to integrate the histogram.
cannam@0 114 */
cannam@0 115 TOut getArea() const;
cannam@0 116
cannam@0 117 /*! \brief Computes the moments of the histogram
cannam@0 118
cannam@0 119 \param data dataset
cannam@0 120 \param ave mean
cannam@0 121 \f[ \bar x = \frac{1}{N} \sum_{j=1}^N x_j\f]
cannam@0 122 \param adev mean absolute deviation
cannam@0 123 \f[ adev(X) = \frac{1}{N} \sum_{j=1}^N | x_j - \bar x |\f]
cannam@0 124 \param var average deviation:
cannam@0 125 \f[ \mbox{Var}(X) = \frac{1}{N-1} \sum_{j=1}^N (x_j - \bar x)^2\f]
cannam@0 126 \param sdev standard deviation:
cannam@0 127 \f[ \sigma(X) = \sqrt{var(\bar x) }\f]
cannam@0 128 \param skew skewness
cannam@0 129 \f[ \mbox{Skew}(X) = \frac{1}{N}\sum_{j=1}^N \left[ \frac{x_j - \bar x}{\sigma}\right]^3\f]
cannam@0 130 \param kurt kurtosis
cannam@0 131 \f[ \mbox{Kurt}(X) = \left\{ \frac{1}{N}\sum_{j=1}^N \left[ \frac{x_j - \bar x}{\sigma}\right]^4 \right\} - 3\f]
cannam@0 132
cannam@0 133 */
cannam@0 134 static void getMoments(const std::vector<T>& data, TOut& ave, TOut& adev, TOut& sdev, TOut& var, TOut& skew, TOut& kurt);
cannam@0 135
cannam@0 136 //! return number of containers
cannam@0 137 unsigned int getSize() const { return m_counters.size();};
cannam@0 138 //! returns i-th counter
cannam@0 139 unsigned int operator [] (unsigned int i) const { ASSERT( i < m_counters.size() ); return m_counters[i];};
cannam@0 140 //! return the computed histogram
cannam@0 141 const std::vector<unsigned int>& geTHistogram() const { return m_counters;};
cannam@0 142 //! return the computed histogram, in TOuts
cannam@0 143 std::vector<TOut> geTHistogramD() const;
cannam@0 144 /*! return the normalized computed histogram
cannam@0 145
cannam@0 146 \return the histogram such that the area is equal to 1
cannam@0 147 */
cannam@0 148 std::vector<TOut> getNormalizedHistogram() const;
cannam@0 149 //! returns left containers position
cannam@0 150 std::vector<TOut> getLeftContainers() const;
cannam@0 151 //! returns center containers position
cannam@0 152 std::vector<TOut> getCenterContainers() const;
cannam@0 153 //@}
cannam@0 154 protected:
cannam@0 155 //! Computes the step
cannam@0 156 void computeStep() { m_step = (TOut)(((TOut)(m_max-m_min)) / (m_counters.size()-1));};
cannam@0 157 //! Data accumulators
cannam@0 158 std::vector<unsigned int> m_counters;
cannam@0 159 //! minimum of dataset
cannam@0 160 T m_min;
cannam@0 161 //! maximum of dataset
cannam@0 162 T m_max;
cannam@0 163 //! width of container
cannam@0 164 TOut m_step;
cannam@0 165 };
cannam@0 166
cannam@0 167 template<class T, class TOut>
cannam@0 168 THistogram<T,TOut>::THistogram(unsigned int counters)
cannam@0 169 : m_counters(counters,0), m_min(0), m_max(0), m_step(0)
cannam@0 170 {
cannam@0 171
cannam@0 172 }
cannam@0 173
cannam@0 174 template<class T, class TOut>
cannam@0 175 void THistogram<T,TOut>::resize( unsigned int counters )
cannam@0 176 {
cannam@0 177 clear();
cannam@0 178
cannam@0 179 m_counters.resize(counters,0);
cannam@0 180
cannam@0 181 computeStep();
cannam@0 182 }
cannam@0 183
cannam@0 184 template<class T, class TOut>
cannam@0 185 void THistogram<T,TOut>::compute( const std::vector<T>& v, bool computeMinMax)
cannam@0 186 {
cannam@0 187 using namespace std;
cannam@0 188 unsigned int i;
cannam@0 189 int index;
cannam@0 190
cannam@0 191 if (m_counters.empty())
cannam@0 192 return;
cannam@0 193
cannam@0 194 if (computeMinMax)
cannam@0 195 {
cannam@0 196 m_max = m_min = v[0];
cannam@0 197 for (i=1;i<v.size();i++)
cannam@0 198 {
cannam@0 199 m_max = std::max( m_max, v[i]);
cannam@0 200 m_min = std::min( m_min, v[i]);
cannam@0 201 }
cannam@0 202 }
cannam@0 203
cannam@0 204 computeStep();
cannam@0 205
cannam@0 206 for (i = 0;i < v.size() ; i++)
cannam@0 207 {
cannam@0 208 index=(int) floor( ((TOut)(v[i]-m_min))/m_step ) ;
cannam@0 209
cannam@0 210 if (index >= m_counters.size() || index < 0)
cannam@0 211 return;
cannam@0 212
cannam@0 213 m_counters[index]++;
cannam@0 214 }
cannam@0 215 }
cannam@0 216
cannam@0 217 template<class T, class TOut>
cannam@0 218 void THistogram<T,TOut>::update( const std::vector<T>& v)
cannam@0 219 {
cannam@0 220 if (m_counters.empty())
cannam@0 221 return;
cannam@0 222
cannam@0 223 computeStep();
cannam@0 224
cannam@0 225 TOut size = m_counters.size();
cannam@0 226
cannam@0 227 int index;
cannam@0 228 for (unsigned int i = 0;i < size ; i++)
cannam@0 229 {
cannam@0 230 index = (int)floor(((TOut)(v[i]-m_min))/m_step);
cannam@0 231
cannam@0 232 if (index >= m_counters.size() || index < 0)
cannam@0 233 return;
cannam@0 234
cannam@0 235 m_counters[index]++;
cannam@0 236 }
cannam@0 237 }
cannam@0 238
cannam@0 239 template<class T, class TOut>
cannam@0 240 void THistogram<T,TOut>::update( const T& t)
cannam@0 241 {
cannam@0 242 int index=(int) floor( ((TOut)(t-m_min))/m_step ) ;
cannam@0 243
cannam@0 244 if (index >= m_counters.size() || index < 0)
cannam@0 245 return;
cannam@0 246
cannam@0 247 m_counters[index]++;
cannam@0 248 };
cannam@0 249
cannam@0 250 template<class T, class TOut>
cannam@0 251 std::vector<TOut> THistogram<T,TOut>::geTHistogramD() const
cannam@0 252 {
cannam@0 253 std::vector<TOut> v(m_counters.size());
cannam@0 254 for (unsigned int i = 0;i<m_counters.size(); i++)
cannam@0 255 v[i]=(TOut)m_counters[i];
cannam@0 256
cannam@0 257 return v;
cannam@0 258 }
cannam@0 259
cannam@0 260 template <class T, class TOut>
cannam@0 261 std::vector<TOut> THistogram<T,TOut>::getLeftContainers() const
cannam@0 262 {
cannam@0 263 std::vector<TOut> x( m_counters.size());
cannam@0 264
cannam@0 265 for (unsigned int i = 0;i<m_counters.size(); i++)
cannam@0 266 x[i]= m_min + i*m_step;
cannam@0 267
cannam@0 268 return x;
cannam@0 269 }
cannam@0 270
cannam@0 271 template <class T, class TOut>
cannam@0 272 std::vector<TOut> THistogram<T,TOut>::getCenterContainers() const
cannam@0 273 {
cannam@0 274 std::vector<TOut> x( m_counters.size());
cannam@0 275
cannam@0 276 for (unsigned int i = 0;i<m_counters.size(); i++)
cannam@0 277 x[i]= m_min + (i+0.5)*m_step;
cannam@0 278
cannam@0 279 return x;
cannam@0 280 }
cannam@0 281
cannam@0 282 template <class T, class TOut>
cannam@0 283 unsigned int THistogram<T,TOut>::getSum() const
cannam@0 284 {
cannam@0 285 unsigned int sum = 0;
cannam@0 286 for (unsigned int i = 0;i<m_counters.size(); i++)
cannam@0 287 sum+=m_counters[i];
cannam@0 288
cannam@0 289 return sum;
cannam@0 290 }
cannam@0 291
cannam@0 292 template <class T, class TOut>
cannam@0 293 TOut THistogram<T,TOut>::getArea() const
cannam@0 294 {
cannam@0 295 const size_t n=m_counters.size();
cannam@0 296 TOut area=0;
cannam@0 297
cannam@0 298 if (n>6)
cannam@0 299 {
cannam@0 300 area=3.0/8.0*(m_counters[0]+m_counters[n-1])
cannam@0 301 +7.0/6.0*(m_counters[1]+m_counters[n-2])
cannam@0 302 +23.0/24.0*(m_counters[2]+m_counters[n-3]);
cannam@0 303 for (unsigned int i=3;i<n-3;i++)
cannam@0 304 {
cannam@0 305 area+=m_counters[i];
cannam@0 306 }
cannam@0 307 }
cannam@0 308 else if (n>4)
cannam@0 309 {
cannam@0 310 area=5.0/12.0*(m_counters[0]+m_counters[n-1])
cannam@0 311 +13.0/12.0*(m_counters[1]+m_counters[n-2]);
cannam@0 312 for (unsigned int i=2;i<n-2;i++)
cannam@0 313 {
cannam@0 314 area+=m_counters[i];
cannam@0 315 }
cannam@0 316 }
cannam@0 317 else if (n>1)
cannam@0 318 {
cannam@0 319 area=1/2.0*(m_counters[0]+m_counters[n-1]);
cannam@0 320 for (unsigned int i=1;i<n-1;i++)
cannam@0 321 {
cannam@0 322 area+=m_counters[i];
cannam@0 323 }
cannam@0 324 }
cannam@0 325 else
cannam@0 326 area=0;
cannam@0 327
cannam@0 328 return area*m_step;
cannam@0 329 }
cannam@0 330
cannam@0 331 template <class T, class TOut>
cannam@0 332 std::vector<TOut> THistogram<T,TOut>::getNormalizedHistogram() const
cannam@0 333 {
cannam@0 334 std::vector<TOut> normCounters( m_counters.size());
cannam@0 335 TOut area = (TOut)getArea();
cannam@0 336
cannam@0 337 for (unsigned int i = 0;i<m_counters.size(); i++)
cannam@0 338 {
cannam@0 339 normCounters[i]= (TOut)m_counters[i]/area;
cannam@0 340 }
cannam@0 341
cannam@0 342 return normCounters;
cannam@0 343 };
cannam@0 344
cannam@0 345 template <class T, class TOut>
cannam@0 346 void THistogram<T,TOut>::getMoments(const std::vector<T>& data, TOut& ave, TOut& adev, TOut& sdev, TOut& var, TOut& skew, TOut& kurt)
cannam@0 347 {
cannam@0 348 int j;
cannam@0 349 double ep=0.0,s,p;
cannam@0 350 const size_t n = data.size();
cannam@0 351
cannam@0 352 if (n <= 1)
cannam@0 353 // nrerror("n must be at least 2 in moment");
cannam@0 354 return;
cannam@0 355
cannam@0 356 s=0.0; // First pass to get the mean.
cannam@0 357 for (j=0;j<n;j++)
cannam@0 358 s += data[j];
cannam@0 359
cannam@0 360 ave=s/(n);
cannam@0 361 adev=var=skew=kurt=0.0;
cannam@0 362 /* Second pass to get the first (absolute), second,
cannam@0 363 third, and fourth moments of the
cannam@0 364 deviation from the mean. */
cannam@0 365
cannam@0 366 for (j=0;j<n;j++)
cannam@0 367 {
cannam@0 368 adev += fabs(s=data[j]-(ave));
cannam@0 369 ep += s;
cannam@0 370 var += (p=s*s);
cannam@0 371 skew += (p *= s);
cannam@0 372 kurt += (p *= s);
cannam@0 373 }
cannam@0 374
cannam@0 375
cannam@0 376 adev /= n;
cannam@0 377 var=(var-ep*ep/n)/(n-1); // Corrected two-pass formula.
cannam@0 378 sdev=sqrt(var); // Put the pieces together according to the conventional definitions.
cannam@0 379 if (var)
cannam@0 380 {
cannam@0 381 skew /= (n*(var)*(sdev));
cannam@0 382 kurt=(kurt)/(n*(var)*(var))-3.0;
cannam@0 383 }
cannam@0 384 else
cannam@0 385 //nrerror("No skew/kurtosis when variance = 0 (in moment)");
cannam@0 386 return;
cannam@0 387 }
cannam@0 388
cannam@0 389 #endif
cannam@0 390