cannam@19
|
1 /*
|
cannam@19
|
2 * hmm.c
|
cannam@19
|
3 * soundbite
|
cannam@19
|
4 *
|
cannam@19
|
5 * Created by Mark Levy on 12/02/2006.
|
cannam@19
|
6 * Copyright 2006 Centre for Digital Music, Queen Mary, University of London. All rights reserved.
|
cannam@19
|
7 *
|
cannam@19
|
8 */
|
cannam@19
|
9
|
cannam@19
|
10 #include <stdio.h>
|
cannam@19
|
11 #include <math.h>
|
cannam@19
|
12 #include <stdlib.h>
|
cannam@19
|
13 #include <float.h>
|
cannam@19
|
14 #include <time.h> /* to seed random number generator */
|
cannam@44
|
15
|
cannam@19
|
16 #include <clapack.h> /* LAPACK for matrix inversion */
|
cannam@44
|
17
|
cannam@44
|
18 #ifdef ATLAS_ORDER
|
cannam@44
|
19 #define HAVE_ATLAS 1
|
cannam@44
|
20 #endif
|
cannam@44
|
21
|
cannam@44
|
22 #ifdef HAVE_ATLAS
|
cannam@44
|
23 // Using ATLAS C interface to LAPACK
|
cannam@44
|
24 #define dgetrf_(m, n, a, lda, ipiv, info) \
|
cannam@44
|
25 clapack_dgetrf(CblasColMajor, *m, *n, a, *lda, ipiv)
|
cannam@44
|
26 #define dgetri_(n, a, lda, ipiv, work, lwork, info) \
|
cannam@44
|
27 clapack_dgetri(CblasColMajor, *n, a, *lda, ipiv)
|
cannam@44
|
28 #endif
|
cannam@44
|
29
|
cannam@19
|
30 #ifdef _MAC_OS_X
|
cannam@19
|
31 #include <vecLib/cblas.h>
|
cannam@19
|
32 #else
|
cannam@19
|
33 #include <cblas.h> /* BLAS for matrix multiplication */
|
cannam@19
|
34 #endif
|
cannam@19
|
35
|
cannam@19
|
36 #include "hmm.h"
|
cannam@19
|
37
|
cannam@19
|
38 model_t* hmm_init(double** x, int T, int L, int N)
|
cannam@19
|
39 {
|
cannam@19
|
40 int i, j, d, e, t;
|
cannam@19
|
41 double s, ss;
|
cannam@19
|
42
|
cannam@19
|
43 model_t* model;
|
cannam@19
|
44 model = (model_t*) malloc(sizeof(model_t));
|
cannam@19
|
45 model->N = N;
|
cannam@19
|
46 model->L = L;
|
cannam@19
|
47 model->p0 = (double*) malloc(N*sizeof(double));
|
cannam@19
|
48 model->a = (double**) malloc(N*sizeof(double*));
|
cannam@19
|
49 model->mu = (double**) malloc(N*sizeof(double*));
|
cannam@19
|
50 for (i = 0; i < N; i++)
|
cannam@19
|
51 {
|
cannam@19
|
52 model->a[i] = (double*) malloc(N*sizeof(double));
|
cannam@19
|
53 model->mu[i] = (double*) malloc(L*sizeof(double));
|
cannam@19
|
54 }
|
cannam@19
|
55 model->cov = (double**) malloc(L*sizeof(double*));
|
cannam@19
|
56 for (i = 0; i < L; i++)
|
cannam@19
|
57 model->cov[i] = (double*) malloc(L*sizeof(double));
|
cannam@19
|
58
|
cannam@19
|
59 srand(time(0));
|
cannam@19
|
60 double* global_mean = (double*) malloc(L*sizeof(double));
|
cannam@19
|
61
|
cannam@19
|
62 /* find global mean */
|
cannam@19
|
63 for (d = 0; d < L; d++)
|
cannam@19
|
64 {
|
cannam@19
|
65 global_mean[d] = 0;
|
cannam@19
|
66 for (t = 0; t < T; t++)
|
cannam@19
|
67 global_mean[d] += x[t][d];
|
cannam@19
|
68 global_mean[d] /= T;
|
cannam@19
|
69 }
|
cannam@19
|
70
|
cannam@19
|
71 /* calculate global diagonal covariance */
|
cannam@19
|
72 for (d = 0; d < L; d++)
|
cannam@19
|
73 {
|
cannam@19
|
74 for (e = 0; e < L; e++)
|
cannam@19
|
75 model->cov[d][e] = 0;
|
cannam@19
|
76 for (t = 0; t < T; t++)
|
cannam@19
|
77 model->cov[d][d] += (x[t][d] - global_mean[d]) * (x[t][d] - global_mean[d]);
|
cannam@19
|
78 model->cov[d][d] /= T-1;
|
cannam@19
|
79 }
|
cannam@19
|
80
|
cannam@19
|
81 /* set all means close to global mean */
|
cannam@19
|
82 for (i = 0; i < N; i++)
|
cannam@19
|
83 {
|
cannam@19
|
84 for (d = 0; d < L; d++)
|
cannam@19
|
85 {
|
cannam@19
|
86 /* add some random noise related to covariance */
|
cannam@19
|
87 /* ideally the random number would be Gaussian(0,1), as a hack we make it uniform on [-0.25,0.25] */
|
cannam@19
|
88 model->mu[i][d] = global_mean[d] + (0.5 * rand() / (double) RAND_MAX - 0.25) * sqrt(model->cov[d][d]);
|
cannam@19
|
89 }
|
cannam@19
|
90 }
|
cannam@19
|
91
|
cannam@19
|
92 /* random intial and transition probs */
|
cannam@19
|
93 s = 0;
|
cannam@19
|
94 for (i = 0; i < N; i++)
|
cannam@19
|
95 {
|
cannam@19
|
96 model->p0[i] = 1 + rand() / (double) RAND_MAX;
|
cannam@19
|
97 s += model->p0[i];
|
cannam@19
|
98 ss = 0;
|
cannam@19
|
99 for (j = 0; j < N; j++)
|
cannam@19
|
100 {
|
cannam@19
|
101 model->a[i][j] = 1 + rand() / (double) RAND_MAX;
|
cannam@19
|
102 ss += model->a[i][j];
|
cannam@19
|
103 }
|
cannam@19
|
104 for (j = 0; j < N; j++)
|
cannam@19
|
105 {
|
cannam@19
|
106 model->a[i][j] /= ss;
|
cannam@19
|
107 }
|
cannam@19
|
108 }
|
cannam@19
|
109 for (i = 0; i < N; i++)
|
cannam@19
|
110 model->p0[i] /= s;
|
cannam@19
|
111
|
cannam@19
|
112 free(global_mean);
|
cannam@19
|
113
|
cannam@19
|
114 return model;
|
cannam@19
|
115 }
|
cannam@19
|
116
|
cannam@19
|
117 void hmm_close(model_t* model)
|
cannam@19
|
118 {
|
cannam@19
|
119 int i;
|
cannam@19
|
120
|
cannam@19
|
121 for (i = 0; i < model->N; i++)
|
cannam@19
|
122 {
|
cannam@19
|
123 free(model->a[i]);
|
cannam@19
|
124 free(model->mu[i]);
|
cannam@19
|
125 }
|
cannam@19
|
126 free(model->a);
|
cannam@19
|
127 free(model->mu);
|
cannam@19
|
128 for (i = 0; i < model->L; i++)
|
cannam@19
|
129 free(model->cov[i]);
|
cannam@19
|
130 free(model->cov);
|
cannam@19
|
131 free(model);
|
cannam@19
|
132 }
|
cannam@19
|
133
|
cannam@19
|
134 void hmm_train(double** x, int T, model_t* model)
|
cannam@19
|
135 {
|
cannam@19
|
136 int i, t;
|
cannam@19
|
137 double loglik; /* overall log-likelihood at each iteration */
|
cannam@19
|
138
|
cannam@19
|
139 int N = model->N;
|
cannam@19
|
140 int L = model->L;
|
cannam@19
|
141 double* p0 = model->p0;
|
cannam@19
|
142 double** a = model->a;
|
cannam@19
|
143 double** mu = model->mu;
|
cannam@19
|
144 double** cov = model->cov;
|
cannam@19
|
145
|
cannam@19
|
146 /* allocate memory */
|
cannam@19
|
147 double** gamma = (double**) malloc(T*sizeof(double*));
|
cannam@19
|
148 double*** xi = (double***) malloc(T*sizeof(double**));
|
cannam@19
|
149 for (t = 0; t < T; t++)
|
cannam@19
|
150 {
|
cannam@19
|
151 gamma[t] = (double*) malloc(N*sizeof(double));
|
cannam@19
|
152 xi[t] = (double**) malloc(N*sizeof(double*));
|
cannam@19
|
153 for (i = 0; i < N; i++)
|
cannam@19
|
154 xi[t][i] = (double*) malloc(N*sizeof(double));
|
cannam@19
|
155 }
|
cannam@19
|
156
|
cannam@19
|
157 /* temporary memory */
|
cannam@19
|
158 double* gauss_y = (double*) malloc(L*sizeof(double));
|
cannam@19
|
159 double* gauss_z = (double*) malloc(L*sizeof(double));
|
cannam@19
|
160
|
cannam@19
|
161 /* obs probs P(j|{x}) */
|
cannam@19
|
162 double** b = (double**) malloc(T*sizeof(double*));
|
cannam@19
|
163 for (t = 0; t < T; t++)
|
cannam@19
|
164 b[t] = (double*) malloc(N*sizeof(double));
|
cannam@19
|
165
|
cannam@19
|
166 /* inverse covariance and its determinant */
|
cannam@19
|
167 double** icov = (double**) malloc(L*sizeof(double*));
|
cannam@19
|
168 for (i = 0; i < L; i++)
|
cannam@19
|
169 icov[i] = (double*) malloc(L*sizeof(double));
|
cannam@19
|
170 double detcov;
|
cannam@19
|
171
|
cannam@19
|
172 double thresh = 0.0001;
|
cannam@19
|
173 int niter = 50;
|
cannam@19
|
174 int iter = 0;
|
cannam@19
|
175 double loglik1, loglik2;
|
cannam@30
|
176 int foundnan = 0;
|
cannam@30
|
177
|
cannam@30
|
178 while (iter < niter && !foundnan && !(iter > 1 && (loglik - loglik1) < thresh * (loglik1 - loglik2)))
|
cannam@19
|
179 {
|
cannam@19
|
180 ++iter;
|
cannam@19
|
181
|
cannam@19
|
182 fprintf(stderr, "calculating obsprobs...\n");
|
cannam@19
|
183 fflush(stderr);
|
cannam@19
|
184
|
cannam@19
|
185 /* precalculate obs probs */
|
cannam@19
|
186 invert(cov, L, icov, &detcov);
|
cannam@19
|
187
|
cannam@19
|
188 for (t = 0; t < T; t++)
|
cannam@19
|
189 {
|
cannam@19
|
190 //int allzero = 1;
|
cannam@19
|
191 for (i = 0; i < N; i++)
|
cannam@19
|
192 {
|
cannam@19
|
193 b[t][i] = exp(loggauss(x[t], L, mu[i], icov, detcov, gauss_y, gauss_z));
|
cannam@19
|
194
|
cannam@19
|
195 //if (b[t][i] != 0)
|
cannam@19
|
196 // allzero = 0;
|
cannam@19
|
197 }
|
cannam@19
|
198 /*
|
cannam@19
|
199 if (allzero)
|
cannam@19
|
200 {
|
cannam@19
|
201 printf("all the b[t][i] were zero for t = %d, correcting...\n", t);
|
cannam@19
|
202 for (i = 0; i < N; i++)
|
cannam@19
|
203 {
|
cannam@19
|
204 b[t][i] = 0.00001;
|
cannam@19
|
205 }
|
cannam@19
|
206 }
|
cannam@19
|
207 */
|
cannam@19
|
208 }
|
cannam@19
|
209
|
cannam@19
|
210 fprintf(stderr, "forwards-backwards...\n");
|
cannam@19
|
211 fflush(stderr);
|
cannam@19
|
212
|
cannam@19
|
213 forward_backwards(xi, gamma, &loglik, &loglik1, &loglik2, iter, N, T, p0, a, b);
|
cannam@19
|
214
|
cannam@19
|
215 fprintf(stderr, "iteration %d: loglik = %f\n", iter, loglik);
|
cannam@19
|
216 fprintf(stderr, "re-estimation...\n");
|
cannam@19
|
217 fflush(stderr);
|
cannam@30
|
218
|
cannam@30
|
219 if (isnan(loglik)) {
|
cannam@30
|
220 foundnan = 1;
|
cannam@30
|
221 continue;
|
cannam@30
|
222 }
|
cannam@19
|
223
|
cannam@19
|
224 baum_welch(p0, a, mu, cov, N, T, L, x, xi, gamma);
|
cannam@19
|
225
|
cannam@19
|
226 /*
|
cannam@19
|
227 printf("a:\n");
|
cannam@19
|
228 for (i = 0; i < model->N; i++)
|
cannam@19
|
229 {
|
cannam@19
|
230 for (j = 0; j < model->N; j++)
|
cannam@19
|
231 printf("%f ", model->a[i][j]);
|
cannam@19
|
232 printf("\n");
|
cannam@19
|
233 }
|
cannam@19
|
234 printf("\n\n");
|
cannam@19
|
235 */
|
cannam@19
|
236 //hmm_print(model);
|
cannam@19
|
237 }
|
cannam@19
|
238
|
cannam@19
|
239 /* deallocate memory */
|
cannam@19
|
240 for (t = 0; t < T; t++)
|
cannam@19
|
241 {
|
cannam@19
|
242 free(gamma[t]);
|
cannam@19
|
243 free(b[t]);
|
cannam@19
|
244 for (i = 0; i < N; i++)
|
cannam@19
|
245 free(xi[t][i]);
|
cannam@19
|
246 free(xi[t]);
|
cannam@19
|
247 }
|
cannam@19
|
248 free(gamma);
|
cannam@19
|
249 free(xi);
|
cannam@19
|
250 free(b);
|
cannam@19
|
251
|
cannam@19
|
252 for (i = 0; i < L; i++)
|
cannam@19
|
253 free(icov[i]);
|
cannam@19
|
254 free(icov);
|
cannam@19
|
255
|
cannam@19
|
256 free(gauss_y);
|
cannam@19
|
257 free(gauss_z);
|
cannam@19
|
258 }
|
cannam@19
|
259
|
cannam@19
|
260 void mlss_reestimate(double* p0, double** a, double** mu, double** cov, int N, int T, int L, int* q, double** x)
|
cannam@19
|
261 {
|
cannam@19
|
262 /* fit a single Gaussian to observations in each state */
|
cannam@19
|
263
|
cannam@19
|
264 /* calculate the mean observation in each state */
|
cannam@19
|
265
|
cannam@19
|
266 /* calculate the overall covariance */
|
cannam@19
|
267
|
cannam@19
|
268 /* count transitions */
|
cannam@19
|
269
|
cannam@19
|
270 /* estimate initial probs from transitions (???) */
|
cannam@19
|
271 }
|
cannam@19
|
272
|
cannam@19
|
273 void baum_welch(double* p0, double** a, double** mu, double** cov, int N, int T, int L, double** x, double*** xi, double** gamma)
|
cannam@19
|
274 {
|
cannam@19
|
275 int i, j, t;
|
cannam@19
|
276
|
cannam@19
|
277 double* sum_gamma = (double*) malloc(N*sizeof(double));
|
cannam@19
|
278
|
cannam@19
|
279 /* temporary memory */
|
cannam@19
|
280 double* u = (double*) malloc(L*L*sizeof(double));
|
cannam@19
|
281 double* yy = (double*) malloc(T*L*sizeof(double));
|
cannam@19
|
282 double* yy2 = (double*) malloc(T*L*sizeof(double));
|
cannam@19
|
283
|
cannam@19
|
284 /* re-estimate transition probs */
|
cannam@19
|
285 for (i = 0; i < N; i++)
|
cannam@19
|
286 {
|
cannam@19
|
287 sum_gamma[i] = 0;
|
cannam@19
|
288 for (t = 0; t < T-1; t++)
|
cannam@19
|
289 sum_gamma[i] += gamma[t][i];
|
cannam@19
|
290 }
|
cannam@19
|
291
|
cannam@19
|
292 for (i = 0; i < N; i++)
|
cannam@19
|
293 {
|
cannam@19
|
294 if (sum_gamma[i] == 0)
|
cannam@19
|
295 {
|
cannam@19
|
296 fprintf(stderr, "sum_gamma[%d] was zero...\n", i);
|
cannam@19
|
297 }
|
cannam@19
|
298 //double s = 0;
|
cannam@19
|
299 for (j = 0; j < N; j++)
|
cannam@19
|
300 {
|
cannam@19
|
301 a[i][j] = 0;
|
cannam@30
|
302 if (sum_gamma[i] == 0.) continue;
|
cannam@19
|
303 for (t = 0; t < T-1; t++)
|
cannam@19
|
304 a[i][j] += xi[t][i][j];
|
cannam@19
|
305 //s += a[i][j];
|
cannam@19
|
306 a[i][j] /= sum_gamma[i];
|
cannam@19
|
307 }
|
cannam@19
|
308 /*
|
cannam@19
|
309 for (j = 0; j < N; j++)
|
cannam@19
|
310 {
|
cannam@19
|
311 a[i][j] /= s;
|
cannam@19
|
312 }
|
cannam@19
|
313 */
|
cannam@19
|
314 }
|
cannam@19
|
315
|
cannam@19
|
316 /* NB: now we need to sum gamma over all t */
|
cannam@19
|
317 for (i = 0; i < N; i++)
|
cannam@19
|
318 sum_gamma[i] += gamma[T-1][i];
|
cannam@19
|
319
|
cannam@19
|
320 /* re-estimate initial probs */
|
cannam@19
|
321 for (i = 0; i < N; i++)
|
cannam@19
|
322 p0[i] = gamma[0][i];
|
cannam@19
|
323
|
cannam@19
|
324 /* re-estimate covariance */
|
cannam@19
|
325 int d, e;
|
cannam@19
|
326 double sum_sum_gamma = 0;
|
cannam@19
|
327 for (i = 0; i < N; i++)
|
cannam@19
|
328 sum_sum_gamma += sum_gamma[i];
|
cannam@19
|
329
|
cannam@19
|
330 /*
|
cannam@19
|
331 for (d = 0; d < L; d++)
|
cannam@19
|
332 {
|
cannam@19
|
333 for (e = d; e < L; e++)
|
cannam@19
|
334 {
|
cannam@19
|
335 cov[d][e] = 0;
|
cannam@19
|
336 for (t = 0; t < T; t++)
|
cannam@19
|
337 for (j = 0; j < N; j++)
|
cannam@19
|
338 cov[d][e] += gamma[t][j] * (x[t][d] - mu[j][d]) * (x[t][e] - mu[j][e]);
|
cannam@19
|
339
|
cannam@19
|
340 cov[d][e] /= sum_sum_gamma;
|
cannam@19
|
341
|
cannam@19
|
342 if (isnan(cov[d][e]))
|
cannam@19
|
343 {
|
cannam@19
|
344 printf("cov[%d][%d] was nan\n", d, e);
|
cannam@19
|
345 for (j = 0; j < N; j++)
|
cannam@19
|
346 for (i = 0; i < L; i++)
|
cannam@19
|
347 if (isnan(mu[j][i]))
|
cannam@19
|
348 printf("mu[%d][%d] was nan\n", j, i);
|
cannam@19
|
349 for (t = 0; t < T; t++)
|
cannam@19
|
350 for (j = 0; j < N; j++)
|
cannam@19
|
351 if (isnan(gamma[t][j]))
|
cannam@19
|
352 printf("gamma[%d][%d] was nan\n", t, j);
|
cannam@19
|
353 exit(-1);
|
cannam@19
|
354 }
|
cannam@19
|
355 }
|
cannam@19
|
356 }
|
cannam@19
|
357 for (d = 0; d < L; d++)
|
cannam@19
|
358 for (e = 0; e < d; e++)
|
cannam@19
|
359 cov[d][e] = cov[e][d];
|
cannam@19
|
360 */
|
cannam@19
|
361
|
cannam@19
|
362 /* using BLAS */
|
cannam@19
|
363 for (d = 0; d < L; d++)
|
cannam@19
|
364 for (e = 0; e < L; e++)
|
cannam@19
|
365 cov[d][e] = 0;
|
cannam@19
|
366
|
cannam@19
|
367 for (j = 0; j < N; j++)
|
cannam@19
|
368 {
|
cannam@19
|
369 for (d = 0; d < L; d++)
|
cannam@19
|
370 for (t = 0; t < T; t++)
|
cannam@19
|
371 {
|
cannam@19
|
372 yy[d*T+t] = x[t][d] - mu[j][d];
|
cannam@19
|
373 yy2[d*T+t] = gamma[t][j] * (x[t][d] - mu[j][d]);
|
cannam@19
|
374 }
|
cannam@19
|
375
|
cannam@19
|
376 cblas_dgemm(CblasColMajor, CblasTrans, CblasNoTrans, L, L, T, 1.0, yy, T, yy2, T, 0, u, L);
|
cannam@19
|
377
|
cannam@19
|
378 for (e = 0; e < L; e++)
|
cannam@19
|
379 for (d = 0; d < L; d++)
|
cannam@19
|
380 cov[d][e] += u[e*L+d];
|
cannam@19
|
381 }
|
cannam@19
|
382
|
cannam@19
|
383 for (d = 0; d < L; d++)
|
cannam@19
|
384 for (e = 0; e < L; e++)
|
cannam@19
|
385 cov[d][e] /= T; /* sum_sum_gamma; */
|
cannam@19
|
386
|
cannam@19
|
387 //printf("sum_sum_gamma = %f\n", sum_sum_gamma); /* fine, = T IS THIS ALWAYS TRUE with pooled cov?? */
|
cannam@19
|
388
|
cannam@19
|
389 /* re-estimate means */
|
cannam@19
|
390 for (j = 0; j < N; j++)
|
cannam@19
|
391 {
|
cannam@19
|
392 for (d = 0; d < L; d++)
|
cannam@19
|
393 {
|
cannam@19
|
394 mu[j][d] = 0;
|
cannam@19
|
395 for (t = 0; t < T; t++)
|
cannam@19
|
396 mu[j][d] += gamma[t][j] * x[t][d];
|
cannam@19
|
397 mu[j][d] /= sum_gamma[j];
|
cannam@19
|
398 }
|
cannam@19
|
399 }
|
cannam@19
|
400
|
cannam@19
|
401 /* deallocate memory */
|
cannam@19
|
402 free(sum_gamma);
|
cannam@19
|
403 free(yy);
|
cannam@19
|
404 free(yy2);
|
cannam@19
|
405 free(u);
|
cannam@19
|
406 }
|
cannam@19
|
407
|
cannam@19
|
408 void forward_backwards(double*** xi, double** gamma, double* loglik, double* loglik1, double* loglik2, int iter, int N, int T, double* p0, double** a, double** b)
|
cannam@19
|
409 {
|
cannam@19
|
410 /* forwards-backwards with scaling */
|
cannam@19
|
411 int i, j, t;
|
cannam@19
|
412
|
cannam@19
|
413 double** alpha = (double**) malloc(T*sizeof(double*));
|
cannam@19
|
414 double** beta = (double**) malloc(T*sizeof(double*));
|
cannam@19
|
415 for (t = 0; t < T; t++)
|
cannam@19
|
416 {
|
cannam@19
|
417 alpha[t] = (double*) malloc(N*sizeof(double));
|
cannam@19
|
418 beta[t] = (double*) malloc(N*sizeof(double));
|
cannam@19
|
419 }
|
cannam@19
|
420
|
cannam@19
|
421 /* scaling coefficients */
|
cannam@19
|
422 double* c = (double*) malloc(T*sizeof(double));
|
cannam@19
|
423
|
cannam@19
|
424 /* calculate forward probs and scale coefficients */
|
cannam@19
|
425 c[0] = 0;
|
cannam@19
|
426 for (i = 0; i < N; i++)
|
cannam@19
|
427 {
|
cannam@19
|
428 alpha[0][i] = p0[i] * b[0][i];
|
cannam@19
|
429 c[0] += alpha[0][i];
|
cannam@19
|
430
|
cannam@19
|
431 //printf("p0[%d] = %f, b[0][%d] = %f\n", i, p0[i], i, b[0][i]);
|
cannam@19
|
432 }
|
cannam@19
|
433 c[0] = 1 / c[0];
|
cannam@19
|
434 for (i = 0; i < N; i++)
|
cannam@19
|
435 {
|
cannam@19
|
436 alpha[0][i] *= c[0];
|
cannam@19
|
437
|
cannam@19
|
438 //printf("alpha[0][%d] = %f\n", i, alpha[0][i]); /* OK agrees with Matlab */
|
cannam@19
|
439 }
|
cannam@19
|
440
|
cannam@19
|
441 *loglik1 = *loglik;
|
cannam@19
|
442 *loglik = -log(c[0]);
|
cannam@19
|
443 if (iter == 2)
|
cannam@19
|
444 *loglik2 = *loglik;
|
cannam@19
|
445
|
cannam@19
|
446 for (t = 1; t < T; t++)
|
cannam@19
|
447 {
|
cannam@19
|
448 c[t] = 0;
|
cannam@19
|
449 for (j = 0; j < N; j++)
|
cannam@19
|
450 {
|
cannam@19
|
451 alpha[t][j] = 0;
|
cannam@19
|
452 for (i = 0; i < N; i++)
|
cannam@19
|
453 alpha[t][j] += alpha[t-1][i] * a[i][j];
|
cannam@19
|
454 alpha[t][j] *= b[t][j];
|
cannam@19
|
455
|
cannam@19
|
456 c[t] += alpha[t][j];
|
cannam@19
|
457 }
|
cannam@19
|
458
|
cannam@19
|
459 /*
|
cannam@19
|
460 if (c[t] == 0)
|
cannam@19
|
461 {
|
cannam@19
|
462 printf("c[%d] = 0, going to blow up so exiting\n", t);
|
cannam@19
|
463 for (i = 0; i < N; i++)
|
cannam@19
|
464 if (b[t][i] == 0)
|
cannam@19
|
465 fprintf(stderr, "b[%d][%d] was zero\n", t, i);
|
cannam@19
|
466 fprintf(stderr, "x[t] was \n");
|
cannam@19
|
467 for (i = 0; i < L; i++)
|
cannam@19
|
468 fprintf(stderr, "%f ", x[t][i]);
|
cannam@19
|
469 fprintf(stderr, "\n\n");
|
cannam@19
|
470 exit(-1);
|
cannam@19
|
471 }
|
cannam@19
|
472 */
|
cannam@19
|
473
|
cannam@19
|
474 c[t] = 1 / c[t];
|
cannam@19
|
475 for (j = 0; j < N; j++)
|
cannam@19
|
476 alpha[t][j] *= c[t];
|
cannam@19
|
477
|
cannam@19
|
478 //printf("c[%d] = %e\n", t, c[t]);
|
cannam@19
|
479
|
cannam@19
|
480 *loglik -= log(c[t]);
|
cannam@19
|
481 }
|
cannam@19
|
482
|
cannam@19
|
483 /* calculate backwards probs using same coefficients */
|
cannam@19
|
484 for (i = 0; i < N; i++)
|
cannam@19
|
485 beta[T-1][i] = 1;
|
cannam@19
|
486 t = T - 1;
|
cannam@19
|
487 while (1)
|
cannam@19
|
488 {
|
cannam@19
|
489 for (i = 0; i < N; i++)
|
cannam@19
|
490 beta[t][i] *= c[t];
|
cannam@19
|
491
|
cannam@19
|
492 if (t == 0)
|
cannam@19
|
493 break;
|
cannam@19
|
494
|
cannam@19
|
495 for (i = 0; i < N; i++)
|
cannam@19
|
496 {
|
cannam@19
|
497 beta[t-1][i] = 0;
|
cannam@19
|
498 for (j = 0; j < N; j++)
|
cannam@19
|
499 beta[t-1][i] += a[i][j] * b[t][j] * beta[t][j];
|
cannam@19
|
500 }
|
cannam@19
|
501
|
cannam@19
|
502 t--;
|
cannam@19
|
503 }
|
cannam@19
|
504
|
cannam@19
|
505 /*
|
cannam@19
|
506 printf("alpha:\n");
|
cannam@19
|
507 for (t = 0; t < T; t++)
|
cannam@19
|
508 {
|
cannam@19
|
509 for (i = 0; i < N; i++)
|
cannam@19
|
510 printf("%4.4e\t\t", alpha[t][i]);
|
cannam@19
|
511 printf("\n");
|
cannam@19
|
512 }
|
cannam@19
|
513 printf("\n\n");printf("beta:\n");
|
cannam@19
|
514 for (t = 0; t < T; t++)
|
cannam@19
|
515 {
|
cannam@19
|
516 for (i = 0; i < N; i++)
|
cannam@19
|
517 printf("%4.4e\t\t", beta[t][i]);
|
cannam@19
|
518 printf("\n");
|
cannam@19
|
519 }
|
cannam@19
|
520 printf("\n\n");
|
cannam@19
|
521 */
|
cannam@19
|
522
|
cannam@19
|
523 /* calculate posterior probs */
|
cannam@19
|
524 double tot;
|
cannam@19
|
525 for (t = 0; t < T; t++)
|
cannam@19
|
526 {
|
cannam@19
|
527 tot = 0;
|
cannam@19
|
528 for (i = 0; i < N; i++)
|
cannam@19
|
529 {
|
cannam@19
|
530 gamma[t][i] = alpha[t][i] * beta[t][i];
|
cannam@19
|
531 tot += gamma[t][i];
|
cannam@19
|
532 }
|
cannam@19
|
533 for (i = 0; i < N; i++)
|
cannam@19
|
534 {
|
cannam@19
|
535 gamma[t][i] /= tot;
|
cannam@19
|
536
|
cannam@19
|
537 //printf("gamma[%d][%d] = %f\n", t, i, gamma[t][i]);
|
cannam@19
|
538 }
|
cannam@19
|
539 }
|
cannam@19
|
540
|
cannam@19
|
541 for (t = 0; t < T-1; t++)
|
cannam@19
|
542 {
|
cannam@19
|
543 tot = 0;
|
cannam@19
|
544 for (i = 0; i < N; i++)
|
cannam@19
|
545 {
|
cannam@19
|
546 for (j = 0; j < N; j++)
|
cannam@19
|
547 {
|
cannam@19
|
548 xi[t][i][j] = alpha[t][i] * a[i][j] * b[t+1][j] * beta[t+1][j];
|
cannam@19
|
549 tot += xi[t][i][j];
|
cannam@19
|
550 }
|
cannam@19
|
551 }
|
cannam@19
|
552 for (i = 0; i < N; i++)
|
cannam@19
|
553 for (j = 0; j < N; j++)
|
cannam@19
|
554 xi[t][i][j] /= tot;
|
cannam@19
|
555 }
|
cannam@19
|
556
|
cannam@19
|
557 /*
|
cannam@19
|
558 // CHECK - fine
|
cannam@19
|
559 // gamma[t][i] = \sum_j{xi[t][i][j]}
|
cannam@19
|
560 tot = 0;
|
cannam@19
|
561 for (j = 0; j < N; j++)
|
cannam@19
|
562 tot += xi[3][1][j];
|
cannam@19
|
563 printf("gamma[3][1] = %f, sum_j(xi[3][1][j]) = %f\n", gamma[3][1], tot);
|
cannam@19
|
564 */
|
cannam@19
|
565
|
cannam@19
|
566 for (t = 0; t < T; t++)
|
cannam@19
|
567 {
|
cannam@19
|
568 free(alpha[t]);
|
cannam@19
|
569 free(beta[t]);
|
cannam@19
|
570 }
|
cannam@19
|
571 free(alpha);
|
cannam@19
|
572 free(beta);
|
cannam@19
|
573 free(c);
|
cannam@19
|
574 }
|
cannam@19
|
575
|
cannam@19
|
576 void viterbi_decode(double** x, int T, model_t* model, int* q)
|
cannam@19
|
577 {
|
cannam@19
|
578 int i, j, t;
|
cannam@19
|
579 double max;
|
cannam@48
|
580 int havemax;
|
cannam@19
|
581
|
cannam@19
|
582 int N = model->N;
|
cannam@19
|
583 int L = model->L;
|
cannam@19
|
584 double* p0 = model->p0;
|
cannam@19
|
585 double** a = model->a;
|
cannam@19
|
586 double** mu = model->mu;
|
cannam@19
|
587 double** cov = model->cov;
|
cannam@19
|
588
|
cannam@19
|
589 /* inverse covariance and its determinant */
|
cannam@19
|
590 double** icov = (double**) malloc(L*sizeof(double*));
|
cannam@19
|
591 for (i = 0; i < L; i++)
|
cannam@19
|
592 icov[i] = (double*) malloc(L*sizeof(double));
|
cannam@19
|
593 double detcov;
|
cannam@19
|
594
|
cannam@19
|
595 double** logb = (double**) malloc(T*sizeof(double*));
|
cannam@19
|
596 double** phi = (double**) malloc(T*sizeof(double*));
|
cannam@19
|
597 int** psi = (int**) malloc(T*sizeof(int*));
|
cannam@19
|
598 for (t = 0; t < T; t++)
|
cannam@19
|
599 {
|
cannam@19
|
600 logb[t] = (double*) malloc(N*sizeof(double));
|
cannam@19
|
601 phi[t] = (double*) malloc(N*sizeof(double));
|
cannam@19
|
602 psi[t] = (int*) malloc(N*sizeof(int));
|
cannam@19
|
603 }
|
cannam@19
|
604
|
cannam@19
|
605 /* temporary memory */
|
cannam@19
|
606 double* gauss_y = (double*) malloc(L*sizeof(double));
|
cannam@19
|
607 double* gauss_z = (double*) malloc(L*sizeof(double));
|
cannam@19
|
608
|
cannam@19
|
609 /* calculate observation logprobs */
|
cannam@19
|
610 invert(cov, L, icov, &detcov);
|
cannam@19
|
611 for (t = 0; t < T; t++)
|
cannam@19
|
612 for (i = 0; i < N; i++)
|
cannam@19
|
613 logb[t][i] = loggauss(x[t], L, mu[i], icov, detcov, gauss_y, gauss_z);
|
cannam@19
|
614
|
cannam@19
|
615 /* initialise */
|
cannam@19
|
616 for (i = 0; i < N; i++)
|
cannam@19
|
617 {
|
cannam@19
|
618 phi[0][i] = log(p0[i]) + logb[0][i];
|
cannam@19
|
619 psi[0][i] = 0;
|
cannam@19
|
620 }
|
cannam@19
|
621
|
cannam@19
|
622 for (t = 1; t < T; t++)
|
cannam@19
|
623 {
|
cannam@19
|
624 for (j = 0; j < N; j++)
|
cannam@19
|
625 {
|
cannam@48
|
626 max = -1000000;
|
cannam@48
|
627 havemax = 0;
|
cannam@48
|
628
|
cannam@19
|
629 psi[t][j] = 0;
|
cannam@19
|
630 for (i = 0; i < N; i++)
|
cannam@19
|
631 {
|
cannam@48
|
632 if (phi[t-1][i] + log(a[i][j]) > max || !havemax)
|
cannam@19
|
633 {
|
cannam@19
|
634 max = phi[t-1][i] + log(a[i][j]);
|
cannam@19
|
635 phi[t][j] = max + logb[t][j];
|
cannam@19
|
636 psi[t][j] = i;
|
cannam@48
|
637 havemax = 1;
|
cannam@19
|
638 }
|
cannam@19
|
639 }
|
cannam@19
|
640 }
|
cannam@19
|
641 }
|
cannam@19
|
642
|
cannam@19
|
643 /* find maximising state at time T-1 */
|
cannam@19
|
644 max = phi[T-1][0];
|
cannam@19
|
645 q[T-1] = 0;
|
cannam@19
|
646 for (i = 1; i < N; i++)
|
cannam@19
|
647 {
|
cannam@19
|
648 if (phi[T-1][i] > max)
|
cannam@19
|
649 {
|
cannam@19
|
650 max = phi[T-1][i];
|
cannam@19
|
651 q[T-1] = i;
|
cannam@19
|
652 }
|
cannam@19
|
653 }
|
cannam@19
|
654
|
cannam@19
|
655
|
cannam@19
|
656 /* track back */
|
cannam@19
|
657 t = T - 2;
|
cannam@19
|
658 while (t >= 0)
|
cannam@19
|
659 {
|
cannam@19
|
660 q[t] = psi[t+1][q[t+1]];
|
cannam@19
|
661 t--;
|
cannam@19
|
662 }
|
cannam@19
|
663
|
cannam@19
|
664 /* de-allocate memory */
|
cannam@19
|
665 for (i = 0; i < L; i++)
|
cannam@19
|
666 free(icov[i]);
|
cannam@19
|
667 free(icov);
|
cannam@19
|
668 for (t = 0; t < T; t++)
|
cannam@19
|
669 {
|
cannam@19
|
670 free(logb[t]);
|
cannam@19
|
671 free(phi[t]);
|
cannam@19
|
672 free(psi[t]);
|
cannam@19
|
673 }
|
cannam@19
|
674 free(logb);
|
cannam@19
|
675 free(phi);
|
cannam@19
|
676 free(psi);
|
cannam@19
|
677
|
cannam@19
|
678 free(gauss_y);
|
cannam@19
|
679 free(gauss_z);
|
cannam@19
|
680 }
|
cannam@19
|
681
|
cannam@19
|
682 /* invert matrix and calculate determinant using LAPACK */
|
cannam@19
|
683 void invert(double** cov, int L, double** icov, double* detcov)
|
cannam@19
|
684 {
|
cannam@19
|
685 /* copy square matrix into a vector in column-major order */
|
cannam@19
|
686 double* a = (double*) malloc(L*L*sizeof(double));
|
cannam@19
|
687 int i, j;
|
cannam@19
|
688 for(j=0; j < L; j++)
|
cannam@19
|
689 for (i=0; i < L; i++)
|
cannam@19
|
690 a[j*L+i] = cov[i][j];
|
cannam@19
|
691
|
cannam@44
|
692 int M = (int) L;
|
cannam@44
|
693 int* ipiv = (int *) malloc(L*L*sizeof(int));
|
cannam@44
|
694 int ret;
|
cannam@19
|
695
|
cannam@19
|
696 /* LU decomposition */
|
cannam@19
|
697 ret = dgetrf_(&M, &M, a, &M, ipiv, &ret); /* ret should be zero, negative if cov is singular */
|
cannam@19
|
698 if (ret < 0)
|
cannam@19
|
699 {
|
cannam@19
|
700 fprintf(stderr, "Covariance matrix was singular, couldn't invert\n");
|
cannam@19
|
701 exit(-1);
|
cannam@19
|
702 }
|
cannam@19
|
703
|
cannam@19
|
704 /* find determinant */
|
cannam@19
|
705 double det = 1;
|
cannam@19
|
706 for(i = 0; i < L; i++)
|
cannam@19
|
707 det *= a[i*L+i];
|
cannam@19
|
708 // TODO: get this to work!!! If detcov < 0 then cov is bad anyway...
|
cannam@19
|
709 /*
|
cannam@19
|
710 int sign = 1;
|
cannam@19
|
711 for (i = 0; i < L; i++)
|
cannam@19
|
712 if (ipiv[i] != i)
|
cannam@19
|
713 sign = -sign;
|
cannam@19
|
714 det *= sign;
|
cannam@19
|
715 */
|
cannam@19
|
716 if (det < 0)
|
cannam@19
|
717 det = -det;
|
cannam@19
|
718 *detcov = det;
|
cannam@19
|
719
|
cannam@19
|
720 /* allocate required working storage */
|
cannam@44
|
721 #ifndef HAVE_ATLAS
|
cannam@44
|
722 int lwork = -1;
|
cannam@44
|
723 double lwbest = 0.0;
|
cannam@19
|
724 dgetri_(&M, a, &M, ipiv, &lwbest, &lwork, &ret);
|
cannam@44
|
725 lwork = (int) lwbest;
|
cannam@19
|
726 double* work = (double*) malloc(lwork*sizeof(double));
|
cannam@44
|
727 #endif
|
cannam@19
|
728
|
cannam@19
|
729 /* find inverse */
|
cannam@19
|
730 dgetri_(&M, a, &M, ipiv, work, &lwork, &ret);
|
cannam@44
|
731
|
cannam@19
|
732 for(j=0; j < L; j++)
|
cannam@19
|
733 for (i=0; i < L; i++)
|
cannam@19
|
734 icov[i][j] = a[j*L+i];
|
cannam@19
|
735
|
cannam@44
|
736 #ifndef HAVE_ATLAS
|
cannam@19
|
737 free(work);
|
cannam@44
|
738 #endif
|
cannam@19
|
739 free(a);
|
cannam@19
|
740 }
|
cannam@19
|
741
|
cannam@19
|
742 /* probability of multivariate Gaussian given mean, inverse and determinant of covariance */
|
cannam@19
|
743 double gauss(double* x, int L, double* mu, double** icov, double detcov, double* y, double* z)
|
cannam@19
|
744 {
|
cannam@19
|
745 int i, j;
|
cannam@19
|
746 double s = 0;
|
cannam@19
|
747 for (i = 0; i < L; i++)
|
cannam@19
|
748 y[i] = x[i] - mu[i];
|
cannam@19
|
749 for (i = 0; i < L; i++)
|
cannam@19
|
750 {
|
cannam@19
|
751 //z[i] = 0;
|
cannam@19
|
752 //for (j = 0; j < L; j++)
|
cannam@19
|
753 // z[i] += icov[i][j] * y[j];
|
cannam@19
|
754 z[i] = cblas_ddot(L, &icov[i][0], 1, y, 1);
|
cannam@19
|
755 }
|
cannam@19
|
756 s = cblas_ddot(L, z, 1, y, 1);
|
cannam@19
|
757 //for (i = 0; i < L; i++)
|
cannam@19
|
758 // s += z[i] * y[i];
|
cannam@19
|
759
|
cannam@19
|
760 return exp(-s/2.0) / (pow(2*PI, L/2.0) * sqrt(detcov));
|
cannam@19
|
761 }
|
cannam@19
|
762
|
cannam@19
|
763 /* log probability of multivariate Gaussian given mean, inverse and determinant of covariance */
|
cannam@19
|
764 double loggauss(double* x, int L, double* mu, double** icov, double detcov, double* y, double* z)
|
cannam@19
|
765 {
|
cannam@19
|
766 int i, j;
|
cannam@19
|
767 double s = 0;
|
cannam@19
|
768 double ret;
|
cannam@19
|
769 for (i = 0; i < L; i++)
|
cannam@19
|
770 y[i] = x[i] - mu[i];
|
cannam@19
|
771 for (i = 0; i < L; i++)
|
cannam@19
|
772 {
|
cannam@19
|
773 //z[i] = 0;
|
cannam@19
|
774 //for (j = 0; j < L; j++)
|
cannam@19
|
775 // z[i] += icov[i][j] * y[j];
|
cannam@19
|
776 z[i] = cblas_ddot(L, &icov[i][0], 1, y, 1);
|
cannam@19
|
777 }
|
cannam@19
|
778 s = cblas_ddot(L, z, 1, y, 1);
|
cannam@19
|
779 //for (i = 0; i < L; i++)
|
cannam@19
|
780 // s += z[i] * y[i];
|
cannam@19
|
781
|
cannam@19
|
782 ret = -0.5 * (s + L * log(2*PI) + log(detcov));
|
cannam@19
|
783
|
cannam@19
|
784 /*
|
cannam@19
|
785 // TEST
|
cannam@19
|
786 if (isinf(ret) > 0)
|
cannam@19
|
787 printf("loggauss returning infinity\n");
|
cannam@19
|
788 if (isinf(ret) < 0)
|
cannam@19
|
789 printf("loggauss returning -infinity\n");
|
cannam@19
|
790 if (isnan(ret))
|
cannam@19
|
791 printf("loggauss returning nan\n");
|
cannam@19
|
792 */
|
cannam@19
|
793
|
cannam@19
|
794 return ret;
|
cannam@19
|
795 }
|
cannam@19
|
796
|
cannam@19
|
797 void hmm_print(model_t* model)
|
cannam@19
|
798 {
|
cannam@19
|
799 int i, j;
|
cannam@19
|
800 printf("p0:\n");
|
cannam@19
|
801 for (i = 0; i < model->N; i++)
|
cannam@19
|
802 printf("%f ", model->p0[i]);
|
cannam@19
|
803 printf("\n\n");
|
cannam@19
|
804 printf("a:\n");
|
cannam@19
|
805 for (i = 0; i < model->N; i++)
|
cannam@19
|
806 {
|
cannam@19
|
807 for (j = 0; j < model->N; j++)
|
cannam@19
|
808 printf("%f ", model->a[i][j]);
|
cannam@19
|
809 printf("\n");
|
cannam@19
|
810 }
|
cannam@19
|
811 printf("\n\n");
|
cannam@19
|
812 printf("mu:\n");
|
cannam@19
|
813 for (i = 0; i < model->N; i++)
|
cannam@19
|
814 {
|
cannam@19
|
815 for (j = 0; j < model->L; j++)
|
cannam@19
|
816 printf("%f ", model->mu[i][j]);
|
cannam@19
|
817 printf("\n");
|
cannam@19
|
818 }
|
cannam@19
|
819 printf("\n\n");
|
cannam@19
|
820 printf("cov:\n");
|
cannam@19
|
821 for (i = 0; i < model->L; i++)
|
cannam@19
|
822 {
|
cannam@19
|
823 for (j = 0; j < model->L; j++)
|
cannam@19
|
824 printf("%f ", model->cov[i][j]);
|
cannam@19
|
825 printf("\n");
|
cannam@19
|
826 }
|
cannam@19
|
827 printf("\n\n");
|
cannam@19
|
828 }
|
cannam@19
|
829
|
cannam@19
|
830
|