annotate dsp/transforms/FFT.cpp @ 289:befe5aa6b450

* Refactor FFT a little bit so as to separate construction and processing rather than have a single static method -- will make it easier to use a different implementation * pull in KissFFT implementation (not hooked up yet)
author Chris Cannam <c.cannam@qmul.ac.uk>
date Wed, 13 May 2009 09:19:12 +0000
parents 9c403afdd9e9
children d1d65fff5356
rev   line source
c@225 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@225 2
c@225 3 /*
c@225 4 QM DSP Library
c@225 5
c@225 6 Centre for Digital Music, Queen Mary, University of London.
c@225 7 This file is based on Don Cross's public domain FFT implementation.
c@225 8 */
c@225 9
c@225 10 #include "FFT.h"
c@280 11
c@280 12 #include "maths/MathUtilities.h"
c@280 13
c@225 14 #include <cmath>
c@225 15
c@280 16 #include <iostream>
c@280 17
c@289 18 #define USE_BUILTIN_FFT 1
c@225 19
c@289 20 #ifdef USE_BUILTIN_FFT
c@289 21
c@289 22 FFT::FFT(unsigned int n) :
c@289 23 m_n(n),
c@289 24 m_private(0)
c@225 25 {
c@289 26 if( !MathUtilities::isPowerOfTwo(m_n) )
c@289 27 {
c@289 28 std::cerr << "ERROR: FFT: Non-power-of-two FFT size "
c@289 29 << m_n << " not supported in this implementation"
c@289 30 << std::endl;
c@289 31 return;
c@289 32 }
c@225 33 }
c@225 34
c@225 35 FFT::~FFT()
c@225 36 {
c@225 37
c@225 38 }
c@225 39
c@289 40 FFTReal::FFTReal(unsigned int n) :
c@289 41 m_n(n),
c@289 42 m_private(0)
c@225 43 {
c@289 44 m_private = new FFT(m_n);
c@289 45 }
c@225 46
c@289 47 FFTReal::~FFTReal()
c@289 48 {
c@289 49 delete (FFT *)m_private;
c@289 50 }
c@289 51
c@289 52 void
c@289 53 FFTReal::process(bool inverse,
c@289 54 const double *realIn,
c@289 55 double *realOut, double *imagOut)
c@289 56 {
c@289 57 ((FFT *)m_private)->process(inverse, realIn, 0, realOut, imagOut);
c@289 58 }
c@289 59
c@289 60 static unsigned int numberOfBitsNeeded(unsigned int p_nSamples)
c@289 61 {
c@289 62 int i;
c@289 63
c@289 64 if( p_nSamples < 2 )
c@289 65 {
c@289 66 return 0;
c@289 67 }
c@289 68
c@289 69 for ( i=0; ; i++ )
c@289 70 {
c@289 71 if( p_nSamples & (1 << i) ) return i;
c@289 72 }
c@289 73 }
c@289 74
c@289 75 static unsigned int reverseBits(unsigned int p_nIndex, unsigned int p_nBits)
c@289 76 {
c@289 77 unsigned int i, rev;
c@289 78
c@289 79 for(i=rev=0; i < p_nBits; i++)
c@289 80 {
c@289 81 rev = (rev << 1) | (p_nIndex & 1);
c@289 82 p_nIndex >>= 1;
c@289 83 }
c@289 84
c@289 85 return rev;
c@289 86 }
c@289 87
c@289 88 void
c@289 89 FFT::process(bool p_bInverseTransform,
c@289 90 const double *p_lpRealIn, const double *p_lpImagIn,
c@289 91 double *p_lpRealOut, double *p_lpImagOut)
c@289 92 {
c@225 93 if(!p_lpRealIn || !p_lpRealOut || !p_lpImagOut) return;
c@225 94
c@225 95 unsigned int NumBits;
c@225 96 unsigned int i, j, k, n;
c@225 97 unsigned int BlockSize, BlockEnd;
c@225 98
c@225 99 double angle_numerator = 2.0 * M_PI;
c@225 100 double tr, ti;
c@225 101
c@289 102 if( !MathUtilities::isPowerOfTwo(m_n) )
c@225 103 {
c@280 104 std::cerr << "ERROR: FFT::process: Non-power-of-two FFT size "
c@289 105 << m_n << " not supported in this implementation"
c@280 106 << std::endl;
c@225 107 return;
c@225 108 }
c@225 109
c@225 110 if( p_bInverseTransform ) angle_numerator = -angle_numerator;
c@225 111
c@289 112 NumBits = numberOfBitsNeeded ( m_n );
c@225 113
c@225 114
c@289 115 for( i=0; i < m_n; i++ )
c@225 116 {
c@225 117 j = reverseBits ( i, NumBits );
c@225 118 p_lpRealOut[j] = p_lpRealIn[i];
c@225 119 p_lpImagOut[j] = (p_lpImagIn == 0) ? 0.0 : p_lpImagIn[i];
c@225 120 }
c@225 121
c@225 122
c@225 123 BlockEnd = 1;
c@289 124 for( BlockSize = 2; BlockSize <= m_n; BlockSize <<= 1 )
c@225 125 {
c@225 126 double delta_angle = angle_numerator / (double)BlockSize;
c@225 127 double sm2 = -sin ( -2 * delta_angle );
c@225 128 double sm1 = -sin ( -delta_angle );
c@225 129 double cm2 = cos ( -2 * delta_angle );
c@225 130 double cm1 = cos ( -delta_angle );
c@225 131 double w = 2 * cm1;
c@225 132 double ar[3], ai[3];
c@225 133
c@289 134 for( i=0; i < m_n; i += BlockSize )
c@225 135 {
c@225 136
c@225 137 ar[2] = cm2;
c@225 138 ar[1] = cm1;
c@225 139
c@225 140 ai[2] = sm2;
c@225 141 ai[1] = sm1;
c@225 142
c@225 143 for ( j=i, n=0; n < BlockEnd; j++, n++ )
c@225 144 {
c@225 145
c@225 146 ar[0] = w*ar[1] - ar[2];
c@225 147 ar[2] = ar[1];
c@225 148 ar[1] = ar[0];
c@225 149
c@225 150 ai[0] = w*ai[1] - ai[2];
c@225 151 ai[2] = ai[1];
c@225 152 ai[1] = ai[0];
c@225 153
c@225 154 k = j + BlockEnd;
c@225 155 tr = ar[0]*p_lpRealOut[k] - ai[0]*p_lpImagOut[k];
c@225 156 ti = ar[0]*p_lpImagOut[k] + ai[0]*p_lpRealOut[k];
c@225 157
c@225 158 p_lpRealOut[k] = p_lpRealOut[j] - tr;
c@225 159 p_lpImagOut[k] = p_lpImagOut[j] - ti;
c@225 160
c@225 161 p_lpRealOut[j] += tr;
c@225 162 p_lpImagOut[j] += ti;
c@225 163
c@225 164 }
c@225 165 }
c@225 166
c@225 167 BlockEnd = BlockSize;
c@225 168
c@225 169 }
c@225 170
c@225 171
c@225 172 if( p_bInverseTransform )
c@225 173 {
c@289 174 double denom = (double)m_n;
c@225 175
c@289 176 for ( i=0; i < m_n; i++ )
c@225 177 {
c@225 178 p_lpRealOut[i] /= denom;
c@225 179 p_lpImagOut[i] /= denom;
c@225 180 }
c@225 181 }
c@225 182 }
c@225 183
c@289 184 #else
c@225 185
c@289 186 #include "kissfft/kiss_fft.h"
c@289 187 #include "kissfft/kiss_fftr.h"
c@225 188
c@289 189 #endif