c@349
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
c@349
|
2
|
c@349
|
3 /*
|
c@349
|
4 QM DSP library
|
c@349
|
5 Centre for Digital Music, Queen Mary, University of London.
|
c@349
|
6
|
c@349
|
7 This program is free software; you can redistribute it and/or
|
c@349
|
8 modify it under the terms of the GNU General Public License as
|
c@349
|
9 published by the Free Software Foundation; either version 2 of the
|
c@349
|
10 License, or (at your option) any later version. See the file
|
c@349
|
11 COPYING included with this distribution for more information.
|
c@349
|
12 */
|
c@349
|
13
|
c@349
|
14 #include "KaiserWindow.h"
|
c@349
|
15
|
c@349
|
16 #include "maths/MathUtilities.h"
|
c@349
|
17
|
c@349
|
18 KaiserWindow::Parameters
|
c@349
|
19 KaiserWindow::parametersForTransitionWidth(double attenuation,
|
c@349
|
20 double transition)
|
c@349
|
21 {
|
c@349
|
22 Parameters p;
|
c@349
|
23 p.length = 1 + (attenuation > 21.0 ?
|
c@349
|
24 ceil((attenuation - 7.95) / (2.285 * transition)) :
|
c@349
|
25 ceil(5.79 / transition));
|
c@349
|
26 p.beta = (attenuation > 50.0 ?
|
c@349
|
27 0.1102 * (attenuation - 8.7) :
|
c@349
|
28 attenuation > 21.0 ?
|
c@349
|
29 0.5842 * pow(attenuation - 21.0, 0.4) + 0.07886 * (attenuation - 21.0) :
|
c@349
|
30 0);
|
c@349
|
31 return p;
|
c@349
|
32 }
|
c@349
|
33
|
c@349
|
34 static double besselTerm(double x, int i)
|
c@349
|
35 {
|
c@349
|
36 if (i == 0) {
|
c@349
|
37 return 1;
|
c@349
|
38 } else {
|
c@349
|
39 double f = MathUtilities::factorial(i);
|
c@349
|
40 return pow(x/2, i*2) / (f*f);
|
c@349
|
41 }
|
c@349
|
42 }
|
c@349
|
43
|
c@349
|
44 static double bessel0(double x)
|
c@349
|
45 {
|
c@349
|
46 double b = 0.0;
|
c@349
|
47 for (int i = 0; i < 20; ++i) {
|
c@349
|
48 b += besselTerm(x, i);
|
c@349
|
49 }
|
c@349
|
50 return b;
|
c@349
|
51 }
|
c@349
|
52
|
c@349
|
53 void
|
c@349
|
54 KaiserWindow::init()
|
c@349
|
55 {
|
c@349
|
56 double denominator = bessel0(m_beta);
|
c@349
|
57 for (int i = 0; i < m_length; ++i) {
|
c@349
|
58 double k = double(2*i) / double(m_length-1) - 1.0;
|
c@349
|
59 m_window.push_back(bessel0(m_beta * sqrt(1.0 - k*k)) / denominator);
|
c@349
|
60 }
|
c@349
|
61 }
|