annotate dsp/chromagram/ConstantQ.cpp @ 339:9c8ee77db9de

Tidy real-to-complex FFT -- forward and inverse have different arguments, so make them separate functions; document
author Chris Cannam <c.cannam@qmul.ac.uk>
date Wed, 02 Oct 2013 15:04:38 +0100
parents d5014ab8b0e5
children 46375e6d1b54
rev   line source
c@225 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@225 2 /*
c@225 3 QM DSP Library
c@225 4
c@225 5 Centre for Digital Music, Queen Mary, University of London.
c@309 6 This file 2005-2006 Christian Landone.
c@309 7
c@309 8 This program is free software; you can redistribute it and/or
c@309 9 modify it under the terms of the GNU General Public License as
c@309 10 published by the Free Software Foundation; either version 2 of the
c@309 11 License, or (at your option) any later version. See the file
c@309 12 COPYING included with this distribution for more information.
c@225 13 */
c@225 14
c@225 15 #include "ConstantQ.h"
c@225 16 #include "dsp/transforms/FFT.h"
c@225 17
c@245 18 #include <iostream>
c@245 19
c@298 20 #ifdef NOT_DEFINED
c@298 21 // see note in CQprecalc
c@298 22
c@276 23 #include "CQprecalc.cpp"
c@276 24
c@276 25 static bool push_precalculated(int uk, int fftlength,
c@276 26 std::vector<unsigned> &is,
c@276 27 std::vector<unsigned> &js,
c@276 28 std::vector<double> &real,
c@276 29 std::vector<double> &imag)
c@276 30 {
c@276 31 if (uk == 76 && fftlength == 16384) {
c@276 32 push_76_16384(is, js, real, imag);
c@276 33 return true;
c@276 34 }
c@276 35 if (uk == 144 && fftlength == 4096) {
c@276 36 push_144_4096(is, js, real, imag);
c@276 37 return true;
c@276 38 }
c@276 39 if (uk == 65 && fftlength == 2048) {
c@276 40 push_65_2048(is, js, real, imag);
c@276 41 return true;
c@276 42 }
c@276 43 if (uk == 84 && fftlength == 65536) {
c@276 44 push_84_65536(is, js, real, imag);
c@276 45 return true;
c@276 46 }
c@276 47 return false;
c@276 48 }
c@298 49 #endif
c@276 50
c@225 51 //---------------------------------------------------------------------------
c@225 52 // nextpow2 returns the smallest integer n such that 2^n >= x.
c@225 53 static double nextpow2(double x) {
c@225 54 double y = ceil(log(x)/log(2.0));
c@225 55 return(y);
c@225 56 }
c@225 57
c@225 58 static double squaredModule(const double & xx, const double & yy) {
c@225 59 return xx*xx + yy*yy;
c@225 60 }
c@225 61
c@225 62 //----------------------------------------------------------------------------
c@225 63
c@276 64 ConstantQ::ConstantQ( CQConfig Config ) :
c@276 65 m_sparseKernel(0)
c@225 66 {
c@225 67 initialise( Config );
c@225 68 }
c@225 69
c@225 70 ConstantQ::~ConstantQ()
c@225 71 {
c@225 72 deInitialise();
c@225 73 }
c@225 74
c@225 75 //----------------------------------------------------------------------------
c@225 76 void ConstantQ::sparsekernel()
c@225 77 {
c@276 78 // std::cerr << "ConstantQ: initialising sparse kernel, uK = " << m_uK << ", FFTLength = " << m_FFTLength << "...";
c@276 79
c@276 80 SparseKernel *sk = new SparseKernel();
c@276 81
c@298 82 #ifdef NOT_DEFINED
c@276 83 if (push_precalculated(m_uK, m_FFTLength,
c@276 84 sk->is, sk->js, sk->real, sk->imag)) {
c@298 85 // std::cerr << "using precalculated kernel" << std::endl;
c@276 86 m_sparseKernel = sk;
c@276 87 return;
c@276 88 }
c@298 89 #endif
c@298 90
c@225 91 //generates spectral kernel matrix (upside down?)
c@225 92 // initialise temporal kernel with zeros, twice length to deal w. complex numbers
c@225 93
c@225 94 double* hammingWindowRe = new double [ m_FFTLength ];
c@225 95 double* hammingWindowIm = new double [ m_FFTLength ];
c@225 96 double* transfHammingWindowRe = new double [ m_FFTLength ];
c@225 97 double* transfHammingWindowIm = new double [ m_FFTLength ];
c@225 98
c@225 99 for (unsigned u=0; u < m_FFTLength; u++)
c@225 100 {
c@225 101 hammingWindowRe[u] = 0;
c@225 102 hammingWindowIm[u] = 0;
c@225 103 }
c@225 104
c@225 105 // Here, fftleng*2 is a guess of the number of sparse cells in the matrix
c@225 106 // The matrix K x fftlength but the non-zero cells are an antialiased
c@225 107 // square root function. So mostly is a line, with some grey point.
c@276 108 sk->is.reserve( m_FFTLength*2 );
c@276 109 sk->js.reserve( m_FFTLength*2 );
c@276 110 sk->real.reserve( m_FFTLength*2 );
c@276 111 sk->imag.reserve( m_FFTLength*2 );
c@225 112
c@225 113 // for each bin value K, calculate temporal kernel, take its fft to
c@225 114 //calculate the spectral kernel then threshold it to make it sparse and
c@225 115 //add it to the sparse kernels matrix
c@225 116 double squareThreshold = m_CQThresh * m_CQThresh;
c@225 117
c@289 118 FFT m_FFT(m_FFTLength);
c@225 119
c@225 120 for (unsigned k = m_uK; k--; )
c@225 121 {
c@228 122 for (unsigned u=0; u < m_FFTLength; u++)
c@228 123 {
c@228 124 hammingWindowRe[u] = 0;
c@228 125 hammingWindowIm[u] = 0;
c@228 126 }
c@228 127
c@225 128 // Computing a hamming window
c@225 129 const unsigned hammingLength = (int) ceil( m_dQ * m_FS / ( m_FMin * pow(2,((double)(k))/(double)m_BPO)));
c@228 130
c@228 131 unsigned origin = m_FFTLength/2 - hammingLength/2;
c@228 132
c@225 133 for (unsigned i=0; i<hammingLength; i++)
c@225 134 {
c@225 135 const double angle = 2*PI*m_dQ*i/hammingLength;
c@225 136 const double real = cos(angle);
c@225 137 const double imag = sin(angle);
c@225 138 const double absol = hamming(hammingLength, i)/hammingLength;
c@228 139 hammingWindowRe[ origin + i ] = absol*real;
c@228 140 hammingWindowIm[ origin + i ] = absol*imag;
c@225 141 }
c@225 142
c@228 143 for (unsigned i = 0; i < m_FFTLength/2; ++i) {
c@228 144 double temp = hammingWindowRe[i];
c@228 145 hammingWindowRe[i] = hammingWindowRe[i + m_FFTLength/2];
c@228 146 hammingWindowRe[i + m_FFTLength/2] = temp;
c@228 147 temp = hammingWindowIm[i];
c@228 148 hammingWindowIm[i] = hammingWindowIm[i + m_FFTLength/2];
c@228 149 hammingWindowIm[i + m_FFTLength/2] = temp;
c@228 150 }
c@228 151
c@225 152 //do fft of hammingWindow
c@289 153 m_FFT.process( 0, hammingWindowRe, hammingWindowIm, transfHammingWindowRe, transfHammingWindowIm );
c@225 154
c@225 155
c@225 156 for (unsigned j=0; j<( m_FFTLength ); j++)
c@225 157 {
c@225 158 // perform thresholding
c@225 159 const double squaredBin = squaredModule( transfHammingWindowRe[ j ], transfHammingWindowIm[ j ]);
c@225 160 if (squaredBin <= squareThreshold) continue;
c@225 161
c@225 162 // Insert non-zero position indexes, doubled because they are floats
c@276 163 sk->is.push_back(j);
c@276 164 sk->js.push_back(k);
c@225 165
c@225 166 // take conjugate, normalise and add to array sparkernel
c@276 167 sk->real.push_back( transfHammingWindowRe[ j ]/m_FFTLength);
c@276 168 sk->imag.push_back(-transfHammingWindowIm[ j ]/m_FFTLength);
c@225 169 }
c@225 170
c@225 171 }
c@225 172
c@225 173 delete [] hammingWindowRe;
c@225 174 delete [] hammingWindowIm;
c@225 175 delete [] transfHammingWindowRe;
c@225 176 delete [] transfHammingWindowIm;
c@225 177
c@276 178 /*
c@276 179 using std::cout;
c@276 180 using std::endl;
c@276 181
c@276 182 cout.precision(28);
c@276 183
c@276 184 int n = sk->is.size();
c@276 185 int w = 8;
c@276 186 cout << "static unsigned int sk_i_" << m_uK << "_" << m_FFTLength << "[" << n << "] = {" << endl;
c@276 187 for (int i = 0; i < n; ++i) {
c@276 188 if (i % w == 0) cout << " ";
c@276 189 cout << sk->is[i];
c@276 190 if (i + 1 < n) cout << ", ";
c@276 191 if (i % w == w-1) cout << endl;
c@276 192 };
c@276 193 if (n % w != 0) cout << endl;
c@276 194 cout << "};" << endl;
c@276 195
c@276 196 n = sk->js.size();
c@276 197 cout << "static unsigned int sk_j_" << m_uK << "_" << m_FFTLength << "[" << n << "] = {" << endl;
c@276 198 for (int i = 0; i < n; ++i) {
c@276 199 if (i % w == 0) cout << " ";
c@276 200 cout << sk->js[i];
c@276 201 if (i + 1 < n) cout << ", ";
c@276 202 if (i % w == w-1) cout << endl;
c@276 203 };
c@276 204 if (n % w != 0) cout << endl;
c@276 205 cout << "};" << endl;
c@276 206
c@276 207 w = 2;
c@276 208 n = sk->real.size();
c@276 209 cout << "static double sk_real_" << m_uK << "_" << m_FFTLength << "[" << n << "] = {" << endl;
c@276 210 for (int i = 0; i < n; ++i) {
c@276 211 if (i % w == 0) cout << " ";
c@276 212 cout << sk->real[i];
c@276 213 if (i + 1 < n) cout << ", ";
c@276 214 if (i % w == w-1) cout << endl;
c@276 215 };
c@276 216 if (n % w != 0) cout << endl;
c@276 217 cout << "};" << endl;
c@276 218
c@276 219 n = sk->imag.size();
c@276 220 cout << "static double sk_imag_" << m_uK << "_" << m_FFTLength << "[" << n << "] = {" << endl;
c@276 221 for (int i = 0; i < n; ++i) {
c@276 222 if (i % w == 0) cout << " ";
c@276 223 cout << sk->imag[i];
c@276 224 if (i + 1 < n) cout << ", ";
c@276 225 if (i % w == w-1) cout << endl;
c@276 226 };
c@276 227 if (n % w != 0) cout << endl;
c@276 228 cout << "};" << endl;
c@276 229
c@276 230 cout << "static void push_" << m_uK << "_" << m_FFTLength << "(vector<unsigned int> &is, vector<unsigned int> &js, vector<double> &real, vector<double> &imag)" << endl;
c@276 231 cout << "{\n is.reserve(" << n << ");\n";
c@276 232 cout << " js.reserve(" << n << ");\n";
c@276 233 cout << " real.reserve(" << n << ");\n";
c@276 234 cout << " imag.reserve(" << n << ");\n";
c@276 235 cout << " for (int i = 0; i < " << n << "; ++i) {" << endl;
c@276 236 cout << " is.push_back(sk_i_" << m_uK << "_" << m_FFTLength << "[i]);" << endl;
c@276 237 cout << " js.push_back(sk_j_" << m_uK << "_" << m_FFTLength << "[i]);" << endl;
c@276 238 cout << " real.push_back(sk_real_" << m_uK << "_" << m_FFTLength << "[i]);" << endl;
c@276 239 cout << " imag.push_back(sk_imag_" << m_uK << "_" << m_FFTLength << "[i]);" << endl;
c@276 240 cout << " }" << endl;
c@276 241 cout << "}" << endl;
c@276 242 */
c@276 243 // std::cerr << "done\n -> is: " << sk->is.size() << ", js: " << sk->js.size() << ", reals: " << sk->real.size() << ", imags: " << sk->imag.size() << std::endl;
c@276 244
c@276 245 m_sparseKernel = sk;
c@276 246 return;
c@225 247 }
c@225 248
c@225 249 //-----------------------------------------------------------------------------
c@257 250 double* ConstantQ::process( const double* fftdata )
c@225 251 {
c@276 252 if (!m_sparseKernel) {
c@276 253 std::cerr << "ERROR: ConstantQ::process: Sparse kernel has not been initialised" << std::endl;
c@276 254 return m_CQdata;
c@276 255 }
c@276 256
c@276 257 SparseKernel *sk = m_sparseKernel;
c@276 258
c@225 259 for (unsigned row=0; row<2*m_uK; row++)
c@225 260 {
c@225 261 m_CQdata[ row ] = 0;
c@225 262 m_CQdata[ row+1 ] = 0;
c@225 263 }
c@276 264 const unsigned *fftbin = &(sk->is[0]);
c@276 265 const unsigned *cqbin = &(sk->js[0]);
c@276 266 const double *real = &(sk->real[0]);
c@276 267 const double *imag = &(sk->imag[0]);
c@276 268 const unsigned int sparseCells = sk->real.size();
c@225 269
c@225 270 for (unsigned i = 0; i<sparseCells; i++)
c@225 271 {
c@225 272 const unsigned row = cqbin[i];
c@225 273 const unsigned col = fftbin[i];
c@225 274 const double & r1 = real[i];
c@225 275 const double & i1 = imag[i];
c@263 276 const double & r2 = fftdata[ (2*m_FFTLength) - 2*col - 2 ];
c@263 277 const double & i2 = fftdata[ (2*m_FFTLength) - 2*col - 2 + 1 ];
c@225 278 // add the multiplication
c@225 279 m_CQdata[ 2*row ] += (r1*r2 - i1*i2);
c@225 280 m_CQdata[ 2*row+1] += (r1*i2 + i1*r2);
c@225 281 }
c@225 282
c@225 283 return m_CQdata;
c@225 284 }
c@225 285
c@225 286
c@225 287 void ConstantQ::initialise( CQConfig Config )
c@225 288 {
c@225 289 m_FS = Config.FS;
c@225 290 m_FMin = Config.min; // min freq
c@225 291 m_FMax = Config.max; // max freq
c@225 292 m_BPO = Config.BPO; // bins per octave
c@225 293 m_CQThresh = Config.CQThresh;// ConstantQ threshold for kernel generation
c@225 294
c@225 295 m_dQ = 1/(pow(2,(1/(double)m_BPO))-1); // Work out Q value for Filter bank
c@225 296 m_uK = (unsigned int) ceil(m_BPO * log(m_FMax/m_FMin)/log(2.0)); // No. of constant Q bins
c@225 297
c@249 298 // std::cerr << "ConstantQ::initialise: rate = " << m_FS << ", fmin = " << m_FMin << ", fmax = " << m_FMax << ", bpo = " << m_BPO << ", K = " << m_uK << ", Q = " << m_dQ << std::endl;
c@245 299
c@225 300 // work out length of fft required for this constant Q Filter bank
c@225 301 m_FFTLength = (int) pow(2, nextpow2(ceil( m_dQ*m_FS/m_FMin )));
c@225 302
c@225 303 m_hop = m_FFTLength/8; // <------ hop size is window length divided by 32
c@225 304
c@249 305 // std::cerr << "ConstantQ::initialise: -> fft length = " << m_FFTLength << ", hop = " << m_hop << std::endl;
c@245 306
c@225 307 // allocate memory for cqdata
c@225 308 m_CQdata = new double [2*m_uK];
c@225 309 }
c@225 310
c@225 311 void ConstantQ::deInitialise()
c@225 312 {
c@225 313 delete [] m_CQdata;
c@276 314 delete m_sparseKernel;
c@225 315 }
c@225 316
c@257 317 void ConstantQ::process(const double *FFTRe, const double* FFTIm,
c@257 318 double *CQRe, double *CQIm)
c@225 319 {
c@276 320 if (!m_sparseKernel) {
c@276 321 std::cerr << "ERROR: ConstantQ::process: Sparse kernel has not been initialised" << std::endl;
c@276 322 return;
c@276 323 }
c@276 324
c@276 325 SparseKernel *sk = m_sparseKernel;
c@276 326
c@225 327 for (unsigned row=0; row<m_uK; row++)
c@225 328 {
c@225 329 CQRe[ row ] = 0;
c@225 330 CQIm[ row ] = 0;
c@225 331 }
c@225 332
c@276 333 const unsigned *fftbin = &(sk->is[0]);
c@276 334 const unsigned *cqbin = &(sk->js[0]);
c@276 335 const double *real = &(sk->real[0]);
c@276 336 const double *imag = &(sk->imag[0]);
c@276 337 const unsigned int sparseCells = sk->real.size();
c@225 338
c@225 339 for (unsigned i = 0; i<sparseCells; i++)
c@225 340 {
c@225 341 const unsigned row = cqbin[i];
c@225 342 const unsigned col = fftbin[i];
c@225 343 const double & r1 = real[i];
c@225 344 const double & i1 = imag[i];
c@263 345 const double & r2 = FFTRe[ m_FFTLength - col - 1 ];
c@263 346 const double & i2 = FFTIm[ m_FFTLength - col - 1 ];
c@225 347 // add the multiplication
c@225 348 CQRe[ row ] += (r1*r2 - i1*i2);
c@225 349 CQIm[ row ] += (r1*i2 + i1*r2);
c@225 350 }
c@225 351 }