annotate dsp/chromagram/ConstantQ.cpp @ 276:4c901426b9f3

* Do not calculate CQ sparse kernel when chromagram is constructed: only when it's actually used * Pre-calculate CQ sparse kernels in the sizes required for the default configurations of some of our transforms
author Chris Cannam <c.cannam@qmul.ac.uk>
date Thu, 04 Dec 2008 11:59:29 +0000
parents 715b0a6bcdc0
children 6cb2b3cd5356
rev   line source
c@225 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@225 2 /*
c@225 3 QM DSP Library
c@225 4
c@225 5 Centre for Digital Music, Queen Mary, University of London.
c@225 6 This file copyright 2005-2006 Christian Landone.
c@225 7 All rights reserved.
c@225 8 */
c@225 9
c@225 10 #include "ConstantQ.h"
c@225 11 #include "dsp/transforms/FFT.h"
c@225 12
c@245 13 #include <iostream>
c@245 14
c@276 15 #include "CQprecalc.cpp"
c@276 16
c@276 17 static bool push_precalculated(int uk, int fftlength,
c@276 18 std::vector<unsigned> &is,
c@276 19 std::vector<unsigned> &js,
c@276 20 std::vector<double> &real,
c@276 21 std::vector<double> &imag)
c@276 22 {
c@276 23 if (uk == 76 && fftlength == 16384) {
c@276 24 push_76_16384(is, js, real, imag);
c@276 25 return true;
c@276 26 }
c@276 27 if (uk == 144 && fftlength == 4096) {
c@276 28 push_144_4096(is, js, real, imag);
c@276 29 return true;
c@276 30 }
c@276 31 if (uk == 65 && fftlength == 2048) {
c@276 32 push_65_2048(is, js, real, imag);
c@276 33 return true;
c@276 34 }
c@276 35 if (uk == 84 && fftlength == 65536) {
c@276 36 push_84_65536(is, js, real, imag);
c@276 37 return true;
c@276 38 }
c@276 39 return false;
c@276 40 }
c@276 41
c@225 42 //---------------------------------------------------------------------------
c@225 43 // nextpow2 returns the smallest integer n such that 2^n >= x.
c@225 44 static double nextpow2(double x) {
c@225 45 double y = ceil(log(x)/log(2.0));
c@225 46 return(y);
c@225 47 }
c@225 48
c@225 49 static double squaredModule(const double & xx, const double & yy) {
c@225 50 return xx*xx + yy*yy;
c@225 51 }
c@225 52
c@225 53 //----------------------------------------------------------------------------
c@225 54
c@276 55 ConstantQ::ConstantQ( CQConfig Config ) :
c@276 56 m_sparseKernel(0)
c@225 57 {
c@225 58 initialise( Config );
c@225 59 }
c@225 60
c@225 61 ConstantQ::~ConstantQ()
c@225 62 {
c@225 63 deInitialise();
c@225 64 }
c@225 65
c@225 66 //----------------------------------------------------------------------------
c@225 67 void ConstantQ::sparsekernel()
c@225 68 {
c@276 69 // std::cerr << "ConstantQ: initialising sparse kernel, uK = " << m_uK << ", FFTLength = " << m_FFTLength << "...";
c@276 70
c@276 71 SparseKernel *sk = new SparseKernel();
c@276 72
c@276 73 if (push_precalculated(m_uK, m_FFTLength,
c@276 74 sk->is, sk->js, sk->real, sk->imag)) {
c@276 75 m_sparseKernel = sk;
c@276 76 return;
c@276 77 }
c@276 78
c@225 79 //generates spectral kernel matrix (upside down?)
c@225 80 // initialise temporal kernel with zeros, twice length to deal w. complex numbers
c@225 81
c@225 82 double* hammingWindowRe = new double [ m_FFTLength ];
c@225 83 double* hammingWindowIm = new double [ m_FFTLength ];
c@225 84 double* transfHammingWindowRe = new double [ m_FFTLength ];
c@225 85 double* transfHammingWindowIm = new double [ m_FFTLength ];
c@225 86
c@225 87 for (unsigned u=0; u < m_FFTLength; u++)
c@225 88 {
c@225 89 hammingWindowRe[u] = 0;
c@225 90 hammingWindowIm[u] = 0;
c@225 91 }
c@225 92
c@225 93 // Here, fftleng*2 is a guess of the number of sparse cells in the matrix
c@225 94 // The matrix K x fftlength but the non-zero cells are an antialiased
c@225 95 // square root function. So mostly is a line, with some grey point.
c@276 96 sk->is.reserve( m_FFTLength*2 );
c@276 97 sk->js.reserve( m_FFTLength*2 );
c@276 98 sk->real.reserve( m_FFTLength*2 );
c@276 99 sk->imag.reserve( m_FFTLength*2 );
c@225 100
c@225 101 // for each bin value K, calculate temporal kernel, take its fft to
c@225 102 //calculate the spectral kernel then threshold it to make it sparse and
c@225 103 //add it to the sparse kernels matrix
c@225 104 double squareThreshold = m_CQThresh * m_CQThresh;
c@225 105
c@225 106 FFT m_FFT;
c@225 107
c@225 108 for (unsigned k = m_uK; k--; )
c@225 109 {
c@228 110 for (unsigned u=0; u < m_FFTLength; u++)
c@228 111 {
c@228 112 hammingWindowRe[u] = 0;
c@228 113 hammingWindowIm[u] = 0;
c@228 114 }
c@228 115
c@225 116 // Computing a hamming window
c@225 117 const unsigned hammingLength = (int) ceil( m_dQ * m_FS / ( m_FMin * pow(2,((double)(k))/(double)m_BPO)));
c@228 118
c@228 119 unsigned origin = m_FFTLength/2 - hammingLength/2;
c@228 120
c@225 121 for (unsigned i=0; i<hammingLength; i++)
c@225 122 {
c@225 123 const double angle = 2*PI*m_dQ*i/hammingLength;
c@225 124 const double real = cos(angle);
c@225 125 const double imag = sin(angle);
c@225 126 const double absol = hamming(hammingLength, i)/hammingLength;
c@228 127 hammingWindowRe[ origin + i ] = absol*real;
c@228 128 hammingWindowIm[ origin + i ] = absol*imag;
c@225 129 }
c@225 130
c@228 131 for (unsigned i = 0; i < m_FFTLength/2; ++i) {
c@228 132 double temp = hammingWindowRe[i];
c@228 133 hammingWindowRe[i] = hammingWindowRe[i + m_FFTLength/2];
c@228 134 hammingWindowRe[i + m_FFTLength/2] = temp;
c@228 135 temp = hammingWindowIm[i];
c@228 136 hammingWindowIm[i] = hammingWindowIm[i + m_FFTLength/2];
c@228 137 hammingWindowIm[i + m_FFTLength/2] = temp;
c@228 138 }
c@228 139
c@225 140 //do fft of hammingWindow
c@225 141 m_FFT.process( m_FFTLength, 0, hammingWindowRe, hammingWindowIm, transfHammingWindowRe, transfHammingWindowIm );
c@225 142
c@225 143
c@225 144 for (unsigned j=0; j<( m_FFTLength ); j++)
c@225 145 {
c@225 146 // perform thresholding
c@225 147 const double squaredBin = squaredModule( transfHammingWindowRe[ j ], transfHammingWindowIm[ j ]);
c@225 148 if (squaredBin <= squareThreshold) continue;
c@225 149
c@225 150 // Insert non-zero position indexes, doubled because they are floats
c@276 151 sk->is.push_back(j);
c@276 152 sk->js.push_back(k);
c@225 153
c@225 154 // take conjugate, normalise and add to array sparkernel
c@276 155 sk->real.push_back( transfHammingWindowRe[ j ]/m_FFTLength);
c@276 156 sk->imag.push_back(-transfHammingWindowIm[ j ]/m_FFTLength);
c@225 157 }
c@225 158
c@225 159 }
c@225 160
c@225 161 delete [] hammingWindowRe;
c@225 162 delete [] hammingWindowIm;
c@225 163 delete [] transfHammingWindowRe;
c@225 164 delete [] transfHammingWindowIm;
c@225 165
c@276 166 /*
c@276 167 using std::cout;
c@276 168 using std::endl;
c@276 169
c@276 170 cout.precision(28);
c@276 171
c@276 172 int n = sk->is.size();
c@276 173 int w = 8;
c@276 174 cout << "static unsigned int sk_i_" << m_uK << "_" << m_FFTLength << "[" << n << "] = {" << endl;
c@276 175 for (int i = 0; i < n; ++i) {
c@276 176 if (i % w == 0) cout << " ";
c@276 177 cout << sk->is[i];
c@276 178 if (i + 1 < n) cout << ", ";
c@276 179 if (i % w == w-1) cout << endl;
c@276 180 };
c@276 181 if (n % w != 0) cout << endl;
c@276 182 cout << "};" << endl;
c@276 183
c@276 184 n = sk->js.size();
c@276 185 cout << "static unsigned int sk_j_" << m_uK << "_" << m_FFTLength << "[" << n << "] = {" << endl;
c@276 186 for (int i = 0; i < n; ++i) {
c@276 187 if (i % w == 0) cout << " ";
c@276 188 cout << sk->js[i];
c@276 189 if (i + 1 < n) cout << ", ";
c@276 190 if (i % w == w-1) cout << endl;
c@276 191 };
c@276 192 if (n % w != 0) cout << endl;
c@276 193 cout << "};" << endl;
c@276 194
c@276 195 w = 2;
c@276 196 n = sk->real.size();
c@276 197 cout << "static double sk_real_" << m_uK << "_" << m_FFTLength << "[" << n << "] = {" << endl;
c@276 198 for (int i = 0; i < n; ++i) {
c@276 199 if (i % w == 0) cout << " ";
c@276 200 cout << sk->real[i];
c@276 201 if (i + 1 < n) cout << ", ";
c@276 202 if (i % w == w-1) cout << endl;
c@276 203 };
c@276 204 if (n % w != 0) cout << endl;
c@276 205 cout << "};" << endl;
c@276 206
c@276 207 n = sk->imag.size();
c@276 208 cout << "static double sk_imag_" << m_uK << "_" << m_FFTLength << "[" << n << "] = {" << endl;
c@276 209 for (int i = 0; i < n; ++i) {
c@276 210 if (i % w == 0) cout << " ";
c@276 211 cout << sk->imag[i];
c@276 212 if (i + 1 < n) cout << ", ";
c@276 213 if (i % w == w-1) cout << endl;
c@276 214 };
c@276 215 if (n % w != 0) cout << endl;
c@276 216 cout << "};" << endl;
c@276 217
c@276 218 cout << "static void push_" << m_uK << "_" << m_FFTLength << "(vector<unsigned int> &is, vector<unsigned int> &js, vector<double> &real, vector<double> &imag)" << endl;
c@276 219 cout << "{\n is.reserve(" << n << ");\n";
c@276 220 cout << " js.reserve(" << n << ");\n";
c@276 221 cout << " real.reserve(" << n << ");\n";
c@276 222 cout << " imag.reserve(" << n << ");\n";
c@276 223 cout << " for (int i = 0; i < " << n << "; ++i) {" << endl;
c@276 224 cout << " is.push_back(sk_i_" << m_uK << "_" << m_FFTLength << "[i]);" << endl;
c@276 225 cout << " js.push_back(sk_j_" << m_uK << "_" << m_FFTLength << "[i]);" << endl;
c@276 226 cout << " real.push_back(sk_real_" << m_uK << "_" << m_FFTLength << "[i]);" << endl;
c@276 227 cout << " imag.push_back(sk_imag_" << m_uK << "_" << m_FFTLength << "[i]);" << endl;
c@276 228 cout << " }" << endl;
c@276 229 cout << "}" << endl;
c@276 230 */
c@276 231 // std::cerr << "done\n -> is: " << sk->is.size() << ", js: " << sk->js.size() << ", reals: " << sk->real.size() << ", imags: " << sk->imag.size() << std::endl;
c@276 232
c@276 233 m_sparseKernel = sk;
c@276 234 return;
c@225 235 }
c@225 236
c@225 237 //-----------------------------------------------------------------------------
c@257 238 double* ConstantQ::process( const double* fftdata )
c@225 239 {
c@276 240 if (!m_sparseKernel) {
c@276 241 std::cerr << "ERROR: ConstantQ::process: Sparse kernel has not been initialised" << std::endl;
c@276 242 return m_CQdata;
c@276 243 }
c@276 244
c@276 245 SparseKernel *sk = m_sparseKernel;
c@276 246
c@225 247 for (unsigned row=0; row<2*m_uK; row++)
c@225 248 {
c@225 249 m_CQdata[ row ] = 0;
c@225 250 m_CQdata[ row+1 ] = 0;
c@225 251 }
c@276 252 const unsigned *fftbin = &(sk->is[0]);
c@276 253 const unsigned *cqbin = &(sk->js[0]);
c@276 254 const double *real = &(sk->real[0]);
c@276 255 const double *imag = &(sk->imag[0]);
c@276 256 const unsigned int sparseCells = sk->real.size();
c@225 257
c@225 258 for (unsigned i = 0; i<sparseCells; i++)
c@225 259 {
c@225 260 const unsigned row = cqbin[i];
c@225 261 const unsigned col = fftbin[i];
c@225 262 const double & r1 = real[i];
c@225 263 const double & i1 = imag[i];
c@263 264 const double & r2 = fftdata[ (2*m_FFTLength) - 2*col - 2 ];
c@263 265 const double & i2 = fftdata[ (2*m_FFTLength) - 2*col - 2 + 1 ];
c@225 266 // add the multiplication
c@225 267 m_CQdata[ 2*row ] += (r1*r2 - i1*i2);
c@225 268 m_CQdata[ 2*row+1] += (r1*i2 + i1*r2);
c@225 269 }
c@225 270
c@225 271 return m_CQdata;
c@225 272 }
c@225 273
c@225 274
c@225 275 void ConstantQ::initialise( CQConfig Config )
c@225 276 {
c@225 277 m_FS = Config.FS;
c@225 278 m_FMin = Config.min; // min freq
c@225 279 m_FMax = Config.max; // max freq
c@225 280 m_BPO = Config.BPO; // bins per octave
c@225 281 m_CQThresh = Config.CQThresh;// ConstantQ threshold for kernel generation
c@225 282
c@225 283 m_dQ = 1/(pow(2,(1/(double)m_BPO))-1); // Work out Q value for Filter bank
c@225 284 m_uK = (unsigned int) ceil(m_BPO * log(m_FMax/m_FMin)/log(2.0)); // No. of constant Q bins
c@225 285
c@249 286 // std::cerr << "ConstantQ::initialise: rate = " << m_FS << ", fmin = " << m_FMin << ", fmax = " << m_FMax << ", bpo = " << m_BPO << ", K = " << m_uK << ", Q = " << m_dQ << std::endl;
c@245 287
c@225 288 // work out length of fft required for this constant Q Filter bank
c@225 289 m_FFTLength = (int) pow(2, nextpow2(ceil( m_dQ*m_FS/m_FMin )));
c@225 290
c@225 291 m_hop = m_FFTLength/8; // <------ hop size is window length divided by 32
c@225 292
c@249 293 // std::cerr << "ConstantQ::initialise: -> fft length = " << m_FFTLength << ", hop = " << m_hop << std::endl;
c@245 294
c@225 295 // allocate memory for cqdata
c@225 296 m_CQdata = new double [2*m_uK];
c@225 297 }
c@225 298
c@225 299 void ConstantQ::deInitialise()
c@225 300 {
c@225 301 delete [] m_CQdata;
c@276 302 delete m_sparseKernel;
c@225 303 }
c@225 304
c@257 305 void ConstantQ::process(const double *FFTRe, const double* FFTIm,
c@257 306 double *CQRe, double *CQIm)
c@225 307 {
c@276 308 if (!m_sparseKernel) {
c@276 309 std::cerr << "ERROR: ConstantQ::process: Sparse kernel has not been initialised" << std::endl;
c@276 310 return;
c@276 311 }
c@276 312
c@276 313 SparseKernel *sk = m_sparseKernel;
c@276 314
c@225 315 for (unsigned row=0; row<m_uK; row++)
c@225 316 {
c@225 317 CQRe[ row ] = 0;
c@225 318 CQIm[ row ] = 0;
c@225 319 }
c@225 320
c@276 321 const unsigned *fftbin = &(sk->is[0]);
c@276 322 const unsigned *cqbin = &(sk->js[0]);
c@276 323 const double *real = &(sk->real[0]);
c@276 324 const double *imag = &(sk->imag[0]);
c@276 325 const unsigned int sparseCells = sk->real.size();
c@225 326
c@225 327 for (unsigned i = 0; i<sparseCells; i++)
c@225 328 {
c@225 329 const unsigned row = cqbin[i];
c@225 330 const unsigned col = fftbin[i];
c@225 331 const double & r1 = real[i];
c@225 332 const double & i1 = imag[i];
c@263 333 const double & r2 = FFTRe[ m_FFTLength - col - 1 ];
c@263 334 const double & i2 = FFTIm[ m_FFTLength - col - 1 ];
c@225 335 // add the multiplication
c@225 336 CQRe[ row ] += (r1*r2 - i1*i2);
c@225 337 CQIm[ row ] += (r1*i2 + i1*r2);
c@225 338 }
c@225 339 }