cannam@52
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
cannam@52
|
2
|
cannam@52
|
3 /*
|
cannam@52
|
4 QM DSP Library
|
cannam@52
|
5
|
cannam@52
|
6 Centre for Digital Music, Queen Mary, University of London.
|
cannam@52
|
7 This file copyright 2008-2009 Matthew Davies and QMUL.
|
cannam@52
|
8 All rights reserved.
|
cannam@52
|
9 */
|
cannam@52
|
10
|
cannam@52
|
11 #include "TempoTrackV2.h"
|
cannam@52
|
12
|
cannam@52
|
13 #include <cmath>
|
cannam@52
|
14 #include <cstdlib>
|
cannam@53
|
15 #include <iostream>
|
cannam@52
|
16
|
cannam@52
|
17
|
cannam@52
|
18 //#define FRAMESIZE 512
|
cannam@52
|
19 //#define BIGFRAMESIZE 1024
|
cannam@52
|
20 #define TWOPI 6.283185307179586232
|
cannam@52
|
21 #define EPS 0.0000008 // just some arbitrary small number
|
cannam@52
|
22
|
cannam@52
|
23 TempoTrackV2::TempoTrackV2() { }
|
cannam@52
|
24 TempoTrackV2::~TempoTrackV2() { }
|
cannam@52
|
25
|
cannam@52
|
26 void
|
cannam@52
|
27 TempoTrackV2::adapt_thresh(d_vec_t &df)
|
cannam@52
|
28 {
|
cannam@53
|
29 d_vec_t smoothed(df.size());
|
cannam@53
|
30
|
cannam@53
|
31 int p_post = 7;
|
cannam@53
|
32 int p_pre = 8;
|
cannam@52
|
33
|
cannam@53
|
34 int t = std::min(static_cast<int>(df.size()),p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays
|
cannam@52
|
35
|
cannam@53
|
36 // find threshold for first 't' samples, where a full average cannot be computed yet
|
cannam@53
|
37 for (int i = 0;i <= t;i++)
|
cannam@53
|
38 {
|
cannam@53
|
39 int k = std::min((i+p_pre),static_cast<int>(df.size()));
|
cannam@53
|
40 smoothed[i] = mean_array(df,1,k);
|
cannam@53
|
41 }
|
cannam@53
|
42 // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post]
|
cannam@53
|
43 for (uint i = t+1;i < df.size()-p_post;i++)
|
cannam@53
|
44 {
|
cannam@53
|
45 smoothed[i] = mean_array(df,i-p_pre,i+p_post);
|
cannam@53
|
46 }
|
cannam@53
|
47 // for last few samples calculate threshold, again, not enough samples to do as above
|
cannam@53
|
48 for (uint i = df.size()-p_post;i < df.size();i++)
|
cannam@53
|
49 {
|
cannam@53
|
50 int k = std::max((static_cast<int> (i) -p_post),1);
|
cannam@53
|
51 smoothed[i] = mean_array(df,k,df.size());
|
cannam@53
|
52 }
|
cannam@52
|
53
|
cannam@53
|
54 // subtract the threshold from the detection function and check that it is not less than 0
|
cannam@53
|
55 for (uint i = 0;i < df.size();i++)
|
cannam@53
|
56 {
|
cannam@53
|
57 df[i] -= smoothed[i];
|
cannam@53
|
58 if (df[i] < 0)
|
cannam@53
|
59 {
|
cannam@53
|
60 df[i] = 0;
|
cannam@53
|
61 }
|
cannam@53
|
62 }
|
cannam@52
|
63 }
|
cannam@52
|
64
|
cannam@52
|
65 double
|
cannam@52
|
66 TempoTrackV2::mean_array(const d_vec_t &dfin,int start,int end)
|
cannam@52
|
67 {
|
cannam@53
|
68 double sum = 0.;
|
cannam@53
|
69
|
cannam@53
|
70 // find sum
|
cannam@53
|
71 for (int i = start;i < end;i++)
|
cannam@53
|
72 {
|
cannam@53
|
73 sum += dfin[i];
|
cannam@53
|
74 }
|
cannam@52
|
75
|
cannam@53
|
76 return static_cast<double> (sum / (end - start + 1) ); // average and return
|
cannam@52
|
77 }
|
cannam@52
|
78
|
cannam@52
|
79 void
|
cannam@52
|
80 TempoTrackV2::filter_df(d_vec_t &df)
|
cannam@52
|
81 {
|
cannam@53
|
82 d_vec_t a(3);
|
cannam@53
|
83 d_vec_t b(3);
|
cannam@53
|
84 d_vec_t lp_df(df.size());
|
cannam@52
|
85
|
cannam@53
|
86 //equivalent in matlab to [b,a] = butter(2,0.4);
|
cannam@53
|
87 a[0] = 1.0000;
|
cannam@53
|
88 a[1] = -0.3695;
|
cannam@53
|
89 a[2] = 0.1958;
|
cannam@53
|
90 b[0] = 0.2066;
|
cannam@53
|
91 b[1] = 0.4131;
|
cannam@53
|
92 b[2] = 0.2066;
|
cannam@53
|
93
|
cannam@53
|
94 double inp1 = 0.;
|
cannam@53
|
95 double inp2 = 0.;
|
cannam@53
|
96 double out1 = 0.;
|
cannam@53
|
97 double out2 = 0.;
|
cannam@52
|
98
|
cannam@52
|
99
|
cannam@53
|
100 // forwards filtering
|
cannam@53
|
101 for (uint i = 0;i < df.size();i++)
|
cannam@53
|
102 {
|
cannam@53
|
103 lp_df[i] = b[0]*df[i] + b[1]*inp1 + b[2]*inp2 - a[1]*out1 - a[2]*out2;
|
cannam@53
|
104 inp2 = inp1;
|
cannam@53
|
105 inp1 = df[i];
|
cannam@53
|
106 out2 = out1;
|
cannam@53
|
107 out1 = lp_df[i];
|
cannam@53
|
108 }
|
cannam@52
|
109
|
cannam@53
|
110 // copy forwards filtering to df...
|
cannam@53
|
111 // but, time-reversed, ready for backwards filtering
|
cannam@53
|
112 for (uint i = 0;i < df.size();i++)
|
cannam@53
|
113 {
|
cannam@53
|
114 df[i] = lp_df[df.size()-i-1];
|
cannam@53
|
115 }
|
cannam@52
|
116
|
cannam@53
|
117 for (uint i = 0;i < df.size();i++)
|
cannam@53
|
118 {
|
cannam@53
|
119 lp_df[i] = 0.;
|
cannam@53
|
120 }
|
cannam@52
|
121
|
cannam@53
|
122 inp1 = 0.; inp2 = 0.;
|
cannam@53
|
123 out1 = 0.; out2 = 0.;
|
cannam@52
|
124
|
cannam@52
|
125 // backwards filetering on time-reversed df
|
cannam@53
|
126 for (uint i = 0;i < df.size();i++)
|
cannam@53
|
127 {
|
cannam@53
|
128 lp_df[i] = b[0]*df[i] + b[1]*inp1 + b[2]*inp2 - a[1]*out1 - a[2]*out2;
|
cannam@53
|
129 inp2 = inp1;
|
cannam@53
|
130 inp1 = df[i];
|
cannam@53
|
131 out2 = out1;
|
cannam@53
|
132 out1 = lp_df[i];
|
cannam@53
|
133 }
|
cannam@52
|
134
|
cannam@52
|
135 // write the re-reversed (i.e. forward) version back to df
|
cannam@53
|
136 for (uint i = 0;i < df.size();i++)
|
cannam@53
|
137 {
|
cannam@53
|
138 df[i] = lp_df[df.size()-i-1];
|
cannam@53
|
139 }
|
cannam@52
|
140 }
|
cannam@52
|
141
|
cannam@52
|
142
|
cannam@52
|
143 void
|
cannam@53
|
144 TempoTrackV2::calculateBeatPeriod(const d_vec_t &df, d_vec_t &beat_period,
|
cannam@53
|
145 d_vec_t &tempi)
|
cannam@52
|
146 {
|
cannam@53
|
147 // to follow matlab.. split into 512 sample frames with a 128 hop size
|
cannam@53
|
148 // calculate the acf,
|
cannam@53
|
149 // then the rcf.. and then stick the rcfs as columns of a matrix
|
cannam@53
|
150 // then call viterbi decoding with weight vector and transition matrix
|
cannam@53
|
151 // and get best path
|
cannam@52
|
152
|
cannam@53
|
153 uint wv_len = 128;
|
cannam@53
|
154 double rayparam = 43.;
|
cannam@52
|
155
|
cannam@53
|
156 // make rayleigh weighting curve
|
cannam@53
|
157 d_vec_t wv(wv_len);
|
cannam@53
|
158 for (uint i=0; i<wv.size(); i++)
|
cannam@52
|
159 {
|
cannam@53
|
160 wv[i] = (static_cast<double> (i) / pow(rayparam,2.)) * exp((-1.*pow(-static_cast<double> (i),2.)) / (2.*pow(rayparam,2.)));
|
cannam@52
|
161 }
|
cannam@52
|
162
|
cannam@53
|
163 // beat tracking frame size (roughly 6 seconds) and hop (1.5 seconds)
|
cannam@53
|
164 uint winlen = 512;
|
cannam@53
|
165 uint step = 128;
|
cannam@53
|
166
|
cannam@53
|
167 // matrix to store output of comb filter bank, increment column of matrix at each frame
|
cannam@53
|
168 d_mat_t rcfmat;
|
cannam@53
|
169 int col_counter = -1;
|
cannam@53
|
170
|
cannam@53
|
171 // main loop for beat period calculation
|
cannam@53
|
172 for (uint i=0; i<(df.size()-winlen); i+=step)
|
cannam@53
|
173 {
|
cannam@53
|
174 // get dfframe
|
cannam@53
|
175 d_vec_t dfframe(winlen);
|
cannam@53
|
176 for (uint k=0; k<winlen; k++)
|
cannam@53
|
177 {
|
cannam@53
|
178 dfframe[k] = df[i+k];
|
cannam@53
|
179 }
|
cannam@53
|
180 // get rcf vector for current frame
|
cannam@53
|
181 d_vec_t rcf(wv_len);
|
cannam@53
|
182 get_rcf(dfframe,wv,rcf);
|
cannam@52
|
183
|
cannam@53
|
184 rcfmat.push_back( d_vec_t() ); // adds a new column
|
cannam@53
|
185 col_counter++;
|
cannam@53
|
186 for (uint j=0; j<rcf.size(); j++)
|
cannam@53
|
187 {
|
cannam@53
|
188 rcfmat[col_counter].push_back( rcf[j] );
|
cannam@53
|
189 }
|
cannam@53
|
190 }
|
cannam@53
|
191
|
cannam@53
|
192 // now call viterbi decoding function
|
cannam@53
|
193 viterbi_decode(rcfmat,wv,beat_period,tempi);
|
cannam@52
|
194 }
|
cannam@52
|
195
|
cannam@52
|
196
|
cannam@52
|
197 void
|
cannam@52
|
198 TempoTrackV2::get_rcf(const d_vec_t &dfframe_in, const d_vec_t &wv, d_vec_t &rcf)
|
cannam@52
|
199 {
|
cannam@53
|
200 // calculate autocorrelation function
|
cannam@53
|
201 // then rcf
|
cannam@53
|
202 // just hard code for now... don't really need separate functions to do this
|
cannam@52
|
203
|
cannam@53
|
204 // make acf
|
cannam@52
|
205
|
cannam@53
|
206 d_vec_t dfframe(dfframe_in);
|
cannam@52
|
207
|
cannam@53
|
208 adapt_thresh(dfframe);
|
cannam@52
|
209
|
cannam@53
|
210 d_vec_t acf(dfframe.size());
|
cannam@52
|
211
|
cannam@53
|
212
|
cannam@53
|
213 for (uint lag=0; lag<dfframe.size(); lag++)
|
cannam@53
|
214 {
|
cannam@53
|
215 double sum = 0.;
|
cannam@53
|
216 double tmp = 0.;
|
cannam@52
|
217
|
cannam@53
|
218 for (uint n=0; n<(dfframe.size()-lag); n++)
|
cannam@53
|
219 {
|
cannam@53
|
220 tmp = dfframe[n] * dfframe[n+lag];
|
cannam@53
|
221 sum += tmp;
|
cannam@53
|
222 }
|
cannam@53
|
223 acf[lag] = static_cast<double> (sum/ (dfframe.size()-lag));
|
cannam@53
|
224 }
|
cannam@52
|
225
|
cannam@53
|
226 // now apply comb filtering
|
cannam@53
|
227 int numelem = 4;
|
cannam@53
|
228
|
cannam@53
|
229 for (uint i = 2;i < rcf.size();i++) // max beat period
|
cannam@53
|
230 {
|
cannam@53
|
231 for (int a = 1;a <= numelem;a++) // number of comb elements
|
cannam@53
|
232 {
|
cannam@53
|
233 for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements
|
cannam@53
|
234 {
|
cannam@53
|
235 rcf[i-1] += ( acf[(a*i+b)-1]*wv[i-1] ) / (2.*a-1.); // calculate value for comb filter row
|
cannam@53
|
236 }
|
cannam@53
|
237 }
|
cannam@53
|
238 }
|
cannam@53
|
239
|
cannam@53
|
240 // apply adaptive threshold to rcf
|
cannam@53
|
241 adapt_thresh(rcf);
|
cannam@53
|
242
|
cannam@53
|
243 double rcfsum =0.;
|
cannam@53
|
244 for (uint i=0; i<rcf.size(); i++)
|
cannam@53
|
245 {
|
cannam@53
|
246 rcf[i] += EPS ;
|
cannam@53
|
247 rcfsum += rcf[i];
|
cannam@53
|
248 }
|
cannam@52
|
249
|
cannam@53
|
250 // normalise rcf to sum to unity
|
cannam@53
|
251 for (uint i=0; i<rcf.size(); i++)
|
cannam@52
|
252 {
|
cannam@53
|
253 rcf[i] /= (rcfsum + EPS);
|
cannam@52
|
254 }
|
cannam@52
|
255 }
|
cannam@52
|
256
|
cannam@52
|
257 void
|
cannam@53
|
258 TempoTrackV2::viterbi_decode(const d_mat_t &rcfmat, const d_vec_t &wv, d_vec_t &beat_period, d_vec_t &tempi)
|
cannam@52
|
259 {
|
cannam@53
|
260 // following Kevin Murphy's Viterbi decoding to get best path of
|
cannam@53
|
261 // beat periods through rfcmat
|
cannam@52
|
262
|
cannam@53
|
263 // make transition matrix
|
cannam@53
|
264 d_mat_t tmat;
|
cannam@53
|
265 for (uint i=0;i<wv.size();i++)
|
cannam@53
|
266 {
|
cannam@53
|
267 tmat.push_back ( d_vec_t() ); // adds a new column
|
cannam@53
|
268 for (uint j=0; j<wv.size(); j++)
|
cannam@53
|
269 {
|
cannam@53
|
270 tmat[i].push_back(0.); // fill with zeros initially
|
cannam@53
|
271 }
|
cannam@53
|
272 }
|
cannam@53
|
273
|
cannam@53
|
274 // variance of Gaussians in transition matrix
|
cannam@53
|
275 // formed of Gaussians on diagonal - implies slow tempo change
|
cannam@53
|
276 double sigma = 8.;
|
cannam@53
|
277 // don't want really short beat periods, or really long ones
|
cannam@53
|
278 for (uint i=20;i <wv.size()-20; i++)
|
cannam@53
|
279 {
|
cannam@53
|
280 for (uint j=20; j<wv.size()-20; j++)
|
cannam@53
|
281 {
|
cannam@53
|
282 double mu = static_cast<double>(i);
|
cannam@53
|
283 tmat[i][j] = exp( (-1.*pow((j-mu),2.)) / (2.*pow(sigma,2.)) );
|
cannam@53
|
284 }
|
cannam@53
|
285 }
|
cannam@52
|
286
|
cannam@53
|
287 // parameters for Viterbi decoding... this part is taken from
|
cannam@53
|
288 // Murphy's matlab
|
cannam@52
|
289
|
cannam@53
|
290 d_mat_t delta;
|
cannam@53
|
291 i_mat_t psi;
|
cannam@53
|
292 for (uint i=0;i <rcfmat.size(); i++)
|
cannam@53
|
293 {
|
cannam@53
|
294 delta.push_back( d_vec_t());
|
cannam@53
|
295 psi.push_back( i_vec_t());
|
cannam@53
|
296 for (uint j=0; j<rcfmat[i].size(); j++)
|
cannam@53
|
297 {
|
cannam@53
|
298 delta[i].push_back(0.); // fill with zeros initially
|
cannam@53
|
299 psi[i].push_back(0); // fill with zeros initially
|
cannam@53
|
300 }
|
cannam@53
|
301 }
|
cannam@52
|
302
|
cannam@52
|
303
|
cannam@53
|
304 uint T = delta.size();
|
cannam@53
|
305 uint Q = delta[0].size();
|
cannam@52
|
306
|
cannam@53
|
307 // initialize first column of delta
|
cannam@52
|
308 for (uint j=0; j<Q; j++)
|
cannam@52
|
309 {
|
cannam@53
|
310 delta[0][j] = wv[j] * rcfmat[0][j];
|
cannam@53
|
311 psi[0][j] = 0;
|
cannam@52
|
312 }
|
cannam@53
|
313
|
cannam@52
|
314 double deltasum = 0.;
|
cannam@52
|
315 for (uint i=0; i<Q; i++)
|
cannam@52
|
316 {
|
cannam@53
|
317 deltasum += delta[0][i];
|
cannam@52
|
318 }
|
cannam@52
|
319 for (uint i=0; i<Q; i++)
|
cannam@52
|
320 {
|
cannam@53
|
321 delta[0][i] /= (deltasum + EPS);
|
cannam@52
|
322 }
|
cannam@52
|
323
|
cannam@52
|
324
|
cannam@53
|
325 for (uint t=1; t<T; t++)
|
cannam@53
|
326 {
|
cannam@53
|
327 d_vec_t tmp_vec(Q);
|
cannam@52
|
328
|
cannam@53
|
329 for (uint j=0; j<Q; j++)
|
cannam@53
|
330 {
|
cannam@53
|
331 for (uint i=0; i<Q; i++)
|
cannam@53
|
332 {
|
cannam@53
|
333 tmp_vec[i] = delta[t-1][i] * tmat[j][i];
|
cannam@53
|
334 }
|
cannam@53
|
335
|
cannam@53
|
336 delta[t][j] = get_max_val(tmp_vec);
|
cannam@52
|
337
|
cannam@53
|
338 psi[t][j] = get_max_ind(tmp_vec);
|
cannam@53
|
339
|
cannam@53
|
340 delta[t][j] *= rcfmat[t][j];
|
cannam@53
|
341 }
|
cannam@52
|
342
|
cannam@53
|
343 // normalise current delta column
|
cannam@53
|
344 double deltasum = 0.;
|
cannam@53
|
345 for (uint i=0; i<Q; i++)
|
cannam@53
|
346 {
|
cannam@53
|
347 deltasum += delta[t][i];
|
cannam@53
|
348 }
|
cannam@53
|
349 for (uint i=0; i<Q; i++)
|
cannam@53
|
350 {
|
cannam@53
|
351 delta[t][i] /= (deltasum + EPS);
|
cannam@53
|
352 }
|
cannam@53
|
353 }
|
cannam@52
|
354
|
cannam@53
|
355 i_vec_t bestpath(T);
|
cannam@53
|
356 d_vec_t tmp_vec(Q);
|
cannam@53
|
357 for (uint i=0; i<Q; i++)
|
cannam@53
|
358 {
|
cannam@53
|
359 tmp_vec[i] = delta[T-1][i];
|
cannam@53
|
360 }
|
cannam@52
|
361
|
cannam@53
|
362 // find starting point - best beat period for "last" frame
|
cannam@53
|
363 bestpath[T-1] = get_max_ind(tmp_vec);
|
cannam@53
|
364
|
cannam@53
|
365 // backtrace through index of maximum values in psi
|
cannam@53
|
366 for (uint t=T-2; t>0 ;t--)
|
cannam@53
|
367 {
|
cannam@53
|
368 bestpath[t] = psi[t+1][bestpath[t+1]];
|
cannam@53
|
369 }
|
cannam@52
|
370
|
cannam@53
|
371 // weird but necessary hack -- couldn't get above loop to terminate at t >= 0
|
cannam@53
|
372 bestpath[0] = psi[1][bestpath[1]];
|
cannam@52
|
373
|
cannam@53
|
374 uint lastind = 0;
|
cannam@53
|
375 for (uint i=0; i<T; i++)
|
cannam@53
|
376 {
|
cannam@53
|
377 uint step = 128;
|
cannam@53
|
378 for (uint j=0; j<step; j++)
|
cannam@53
|
379 {
|
cannam@53
|
380 lastind = i*step+j;
|
cannam@53
|
381 beat_period[lastind] = bestpath[i];
|
cannam@53
|
382 }
|
cannam@53
|
383 }
|
cannam@52
|
384
|
cannam@53
|
385 //fill in the last values...
|
cannam@53
|
386 for (uint i=lastind; i<beat_period.size(); i++)
|
cannam@53
|
387 {
|
cannam@53
|
388 beat_period[i] = beat_period[lastind];
|
cannam@53
|
389 }
|
cannam@52
|
390
|
cannam@53
|
391 for (uint i = 0; i < beat_period.size(); i++)
|
cannam@52
|
392 {
|
cannam@53
|
393 tempi.push_back((60.*44100./512.)/beat_period[i]);
|
cannam@52
|
394 }
|
cannam@52
|
395 }
|
cannam@52
|
396
|
cannam@52
|
397 double
|
cannam@52
|
398 TempoTrackV2::get_max_val(const d_vec_t &df)
|
cannam@52
|
399 {
|
cannam@53
|
400 double maxval = 0.;
|
cannam@53
|
401 for (uint i=0; i<df.size(); i++)
|
cannam@52
|
402 {
|
cannam@53
|
403 if (maxval < df[i])
|
cannam@53
|
404 {
|
cannam@53
|
405 maxval = df[i];
|
cannam@53
|
406 }
|
cannam@52
|
407 }
|
cannam@52
|
408
|
cannam@53
|
409 return maxval;
|
cannam@52
|
410 }
|
cannam@52
|
411
|
cannam@52
|
412 int
|
cannam@52
|
413 TempoTrackV2::get_max_ind(const d_vec_t &df)
|
cannam@52
|
414 {
|
cannam@53
|
415 double maxval = 0.;
|
cannam@53
|
416 int ind = 0;
|
cannam@53
|
417 for (uint i=0; i<df.size(); i++)
|
cannam@52
|
418 {
|
cannam@53
|
419 if (maxval < df[i])
|
cannam@53
|
420 {
|
cannam@53
|
421 maxval = df[i];
|
cannam@53
|
422 ind = i;
|
cannam@53
|
423 }
|
cannam@52
|
424 }
|
cannam@53
|
425
|
cannam@53
|
426 return ind;
|
cannam@52
|
427 }
|
cannam@52
|
428
|
cannam@52
|
429 void
|
cannam@52
|
430 TempoTrackV2::normalise_vec(d_vec_t &df)
|
cannam@52
|
431 {
|
cannam@53
|
432 double sum = 0.;
|
cannam@53
|
433 for (uint i=0; i<df.size(); i++)
|
cannam@53
|
434 {
|
cannam@53
|
435 sum += df[i];
|
cannam@53
|
436 }
|
cannam@53
|
437
|
cannam@53
|
438 for (uint i=0; i<df.size(); i++)
|
cannam@53
|
439 {
|
cannam@53
|
440 df[i]/= (sum + EPS);
|
cannam@53
|
441 }
|
cannam@52
|
442 }
|
cannam@52
|
443
|
cannam@52
|
444 void
|
cannam@52
|
445 TempoTrackV2::calculateBeats(const d_vec_t &df, const d_vec_t &beat_period,
|
cannam@52
|
446 d_vec_t &beats)
|
cannam@52
|
447 {
|
cannam@53
|
448 d_vec_t cumscore(df.size()); // store cumulative score
|
cannam@53
|
449 i_vec_t backlink(df.size()); // backlink (stores best beat locations at each time instant)
|
cannam@53
|
450 d_vec_t localscore(df.size()); // localscore, for now this is the same as the detection function
|
cannam@52
|
451
|
cannam@53
|
452 for (uint i=0; i<df.size(); i++)
|
cannam@52
|
453 {
|
cannam@53
|
454 localscore[i] = df[i];
|
cannam@53
|
455 backlink[i] = -1;
|
cannam@52
|
456 }
|
cannam@52
|
457
|
cannam@53
|
458 double tightness = 4.;
|
cannam@53
|
459 double alpha = 0.9;
|
cannam@52
|
460
|
cannam@53
|
461 // main loop
|
cannam@53
|
462 for (uint i=0; i<localscore.size(); i++)
|
cannam@53
|
463 {
|
cannam@53
|
464 int prange_min = -2*beat_period[i];
|
cannam@53
|
465 int prange_max = round(-0.5*beat_period[i]);
|
cannam@52
|
466
|
cannam@53
|
467 // transition range
|
cannam@53
|
468 d_vec_t txwt (prange_max - prange_min + 1);
|
cannam@53
|
469 d_vec_t scorecands (txwt.size());
|
cannam@52
|
470
|
cannam@53
|
471 for (uint j=0;j<txwt.size();j++)
|
cannam@53
|
472 {
|
cannam@53
|
473 double mu = static_cast<double> (beat_period[i]);
|
cannam@53
|
474 txwt[j] = exp( -0.5*pow(tightness * log((round(2*mu)-j)/mu),2));
|
cannam@52
|
475
|
cannam@53
|
476 // IF IN THE ALLOWED RANGE, THEN LOOK AT CUMSCORE[I+PRANGE_MIN+J
|
cannam@53
|
477 // ELSE LEAVE AT DEFAULT VALUE FROM INITIALISATION: D_VEC_T SCORECANDS (TXWT.SIZE());
|
cannam@52
|
478
|
cannam@53
|
479 int cscore_ind = i+prange_min+j;
|
cannam@53
|
480 if (cscore_ind >= 0)
|
cannam@53
|
481 {
|
cannam@53
|
482 scorecands[j] = txwt[j] * cumscore[cscore_ind];
|
cannam@53
|
483 }
|
cannam@53
|
484 }
|
cannam@52
|
485
|
cannam@53
|
486 // find max value and index of maximum value
|
cannam@53
|
487 double vv = get_max_val(scorecands);
|
cannam@53
|
488 int xx = get_max_ind(scorecands);
|
cannam@52
|
489
|
cannam@53
|
490 cumscore[i] = alpha*vv + (1.-alpha)*localscore[i];
|
cannam@53
|
491 backlink[i] = i+prange_min+xx;
|
cannam@53
|
492 }
|
cannam@53
|
493
|
cannam@53
|
494 // STARTING POINT, I.E. LAST BEAT.. PICK A STRONG POINT IN cumscore VECTOR
|
cannam@53
|
495 d_vec_t tmp_vec;
|
cannam@53
|
496 for (uint i=cumscore.size() - beat_period[beat_period.size()-1] ; i<cumscore.size(); i++)
|
cannam@53
|
497 {
|
cannam@53
|
498 tmp_vec.push_back(cumscore[i]);
|
cannam@53
|
499 }
|
cannam@53
|
500
|
cannam@53
|
501 int startpoint = get_max_ind(tmp_vec) + cumscore.size() - beat_period[beat_period.size()-1] ;
|
cannam@53
|
502
|
cannam@53
|
503 // USE BACKLINK TO GET EACH NEW BEAT (TOWARDS THE BEGINNING OF THE FILE)
|
cannam@53
|
504 // BACKTRACKING FROM THE END TO THE BEGINNING.. MAKING SURE NOT TO GO BEFORE SAMPLE 0
|
cannam@53
|
505 i_vec_t ibeats;
|
cannam@53
|
506 ibeats.push_back(startpoint);
|
cannam@53
|
507 while (backlink[ibeats.back()] > 0)
|
cannam@53
|
508 {
|
cannam@53
|
509 ibeats.push_back(backlink[ibeats.back()]);
|
cannam@53
|
510 }
|
cannam@52
|
511
|
cannam@53
|
512 // REVERSE SEQUENCE OF IBEATS AND STORE AS BEATS
|
cannam@53
|
513 for (uint i=0; i<ibeats.size(); i++)
|
cannam@53
|
514 {
|
cannam@53
|
515 beats.push_back( static_cast<double>(ibeats[ibeats.size()-i-1]) );
|
cannam@53
|
516 }
|
cannam@52
|
517 }
|
cannam@52
|
518
|
cannam@52
|
519
|