annotate ext/kissfft/test/fft.py @ 184:76ec2365b250

Bring in kissfft into this repo (formerly a subrepo, but the remote is not responding)
author Chris Cannam
date Tue, 21 Jul 2015 07:34:15 +0100
parents
children
rev   line source
Chris@184 1 #!/usr/bin/env python
Chris@184 2
Chris@184 3 import math
Chris@184 4 import sys
Chris@184 5 import random
Chris@184 6
Chris@184 7 pi=math.pi
Chris@184 8 e=math.e
Chris@184 9 j=complex(0,1)
Chris@184 10
Chris@184 11 def fft(f,inv):
Chris@184 12 n=len(f)
Chris@184 13 if n==1:
Chris@184 14 return f
Chris@184 15
Chris@184 16 for p in 2,3,5:
Chris@184 17 if n%p==0:
Chris@184 18 break
Chris@184 19 else:
Chris@184 20 raise Exception('%s not factorable ' % n)
Chris@184 21
Chris@184 22 m = n/p
Chris@184 23 Fout=[]
Chris@184 24 for q in range(p): # 0,1
Chris@184 25 fp = f[q::p] # every p'th time sample
Chris@184 26 Fp = fft( fp ,inv)
Chris@184 27 Fout.extend( Fp )
Chris@184 28
Chris@184 29 for u in range(m):
Chris@184 30 scratch = Fout[u::m] # u to end in strides of m
Chris@184 31 for q1 in range(p):
Chris@184 32 k = q1*m + u # indices to Fout above that became scratch
Chris@184 33 Fout[ k ] = scratch[0] # cuz e**0==1 in loop below
Chris@184 34 for q in range(1,p):
Chris@184 35 if inv:
Chris@184 36 t = e ** ( j*2*pi*k*q/n )
Chris@184 37 else:
Chris@184 38 t = e ** ( -j*2*pi*k*q/n )
Chris@184 39 Fout[ k ] += scratch[q] * t
Chris@184 40
Chris@184 41 return Fout
Chris@184 42
Chris@184 43 def rifft(F):
Chris@184 44 N = len(F) - 1
Chris@184 45 Z = [0] * (N)
Chris@184 46 for k in range(N):
Chris@184 47 Fek = ( F[k] + F[-k-1].conjugate() )
Chris@184 48 Fok = ( F[k] - F[-k-1].conjugate() ) * e ** (j*pi*k/N)
Chris@184 49 Z[k] = Fek + j*Fok
Chris@184 50
Chris@184 51 fp = fft(Z , 1)
Chris@184 52
Chris@184 53 f = []
Chris@184 54 for c in fp:
Chris@184 55 f.append(c.real)
Chris@184 56 f.append(c.imag)
Chris@184 57 return f
Chris@184 58
Chris@184 59 def real_fft( f,inv ):
Chris@184 60 if inv:
Chris@184 61 return rifft(f)
Chris@184 62
Chris@184 63 N = len(f) / 2
Chris@184 64
Chris@184 65 res = f[::2]
Chris@184 66 ims = f[1::2]
Chris@184 67
Chris@184 68 fp = [ complex(r,i) for r,i in zip(res,ims) ]
Chris@184 69 print 'fft input ', fp
Chris@184 70 Fp = fft( fp ,0 )
Chris@184 71 print 'fft output ', Fp
Chris@184 72
Chris@184 73 F = [ complex(0,0) ] * ( N+1 )
Chris@184 74
Chris@184 75 F[0] = complex( Fp[0].real + Fp[0].imag , 0 )
Chris@184 76
Chris@184 77 for k in range(1,N/2+1):
Chris@184 78 tw = e ** ( -j*pi*(.5+float(k)/N ) )
Chris@184 79
Chris@184 80 F1k = Fp[k] + Fp[N-k].conjugate()
Chris@184 81 F2k = Fp[k] - Fp[N-k].conjugate()
Chris@184 82 F2k *= tw
Chris@184 83 F[k] = ( F1k + F2k ) * .5
Chris@184 84 F[N-k] = ( F1k - F2k ).conjugate() * .5
Chris@184 85 #F[N-k] = ( F1kp + e ** ( -j*pi*(.5+float(N-k)/N ) ) * F2kp ) * .5
Chris@184 86 #F[N-k] = ( F1k.conjugate() - tw.conjugate() * F2k.conjugate() ) * .5
Chris@184 87
Chris@184 88 F[N] = complex( Fp[0].real - Fp[0].imag , 0 )
Chris@184 89 return F
Chris@184 90
Chris@184 91 def main():
Chris@184 92 #fft_func = fft
Chris@184 93 fft_func = real_fft
Chris@184 94
Chris@184 95 tvec = [0.309655,0.815653,0.768570,0.591841,0.404767,0.637617,0.007803,0.012665]
Chris@184 96 Ftvec = [ complex(r,i) for r,i in zip(
Chris@184 97 [3.548571,-0.378761,-0.061950,0.188537,-0.566981,0.188537,-0.061950,-0.378761],
Chris@184 98 [0.000000,-1.296198,-0.848764,0.225337,0.000000,-0.225337,0.848764,1.296198] ) ]
Chris@184 99
Chris@184 100 F = fft_func( tvec,0 )
Chris@184 101
Chris@184 102 nerrs= 0
Chris@184 103 for i in range(len(Ftvec)/2 + 1):
Chris@184 104 if abs( F[i] - Ftvec[i] )> 1e-5:
Chris@184 105 print 'F[%d]: %s != %s' % (i,F[i],Ftvec[i])
Chris@184 106 nerrs += 1
Chris@184 107
Chris@184 108 print '%d errors in forward fft' % nerrs
Chris@184 109 if nerrs:
Chris@184 110 return
Chris@184 111
Chris@184 112 trec = fft_func( F , 1 )
Chris@184 113
Chris@184 114 for i in range(len(trec) ):
Chris@184 115 trec[i] /= len(trec)
Chris@184 116
Chris@184 117 for i in range(len(tvec) ):
Chris@184 118 if abs( trec[i] - tvec[i] )> 1e-5:
Chris@184 119 print 't[%d]: %s != %s' % (i,tvec[i],trec[i])
Chris@184 120 nerrs += 1
Chris@184 121
Chris@184 122 print '%d errors in reverse fft' % nerrs
Chris@184 123
Chris@184 124
Chris@184 125 def make_random(dims=[1]):
Chris@184 126 import Numeric
Chris@184 127 res = []
Chris@184 128 for i in range(dims[0]):
Chris@184 129 if len(dims)==1:
Chris@184 130 r=random.uniform(-1,1)
Chris@184 131 i=random.uniform(-1,1)
Chris@184 132 res.append( complex(r,i) )
Chris@184 133 else:
Chris@184 134 res.append( make_random( dims[1:] ) )
Chris@184 135 return Numeric.array(res)
Chris@184 136
Chris@184 137 def flatten(x):
Chris@184 138 import Numeric
Chris@184 139 ntotal = Numeric.product(Numeric.shape(x))
Chris@184 140 return Numeric.reshape(x,(ntotal,))
Chris@184 141
Chris@184 142 def randmat( ndims ):
Chris@184 143 dims=[]
Chris@184 144 for i in range( ndims ):
Chris@184 145 curdim = int( random.uniform(2,4) )
Chris@184 146 dims.append( curdim )
Chris@184 147 return make_random(dims )
Chris@184 148
Chris@184 149 def test_fftnd(ndims=3):
Chris@184 150 import FFT
Chris@184 151 import Numeric
Chris@184 152
Chris@184 153 x=randmat( ndims )
Chris@184 154 print 'dimensions=%s' % str( Numeric.shape(x) )
Chris@184 155 #print 'x=%s' %str(x)
Chris@184 156 xver = FFT.fftnd(x)
Chris@184 157 x2=myfftnd(x)
Chris@184 158 err = xver - x2
Chris@184 159 errf = flatten(err)
Chris@184 160 xverf = flatten(xver)
Chris@184 161 errpow = Numeric.vdot(errf,errf)+1e-10
Chris@184 162 sigpow = Numeric.vdot(xverf,xverf)+1e-10
Chris@184 163 snr = 10*math.log10(abs(sigpow/errpow) )
Chris@184 164 if snr<80:
Chris@184 165 print xver
Chris@184 166 print x2
Chris@184 167 print 'SNR=%sdB' % str( snr )
Chris@184 168
Chris@184 169 def myfftnd(x):
Chris@184 170 import Numeric
Chris@184 171 xf = flatten(x)
Chris@184 172 Xf = fftndwork( xf , Numeric.shape(x) )
Chris@184 173 return Numeric.reshape(Xf,Numeric.shape(x) )
Chris@184 174
Chris@184 175 def fftndwork(x,dims):
Chris@184 176 import Numeric
Chris@184 177 dimprod=Numeric.product( dims )
Chris@184 178
Chris@184 179 for k in range( len(dims) ):
Chris@184 180 cur_dim=dims[ k ]
Chris@184 181 stride=dimprod/cur_dim
Chris@184 182 next_x = [complex(0,0)]*len(x)
Chris@184 183 for i in range(stride):
Chris@184 184 next_x[i*cur_dim:(i+1)*cur_dim] = fft(x[i:(i+cur_dim)*stride:stride],0)
Chris@184 185 x = next_x
Chris@184 186 return x
Chris@184 187
Chris@184 188 if __name__ == "__main__":
Chris@184 189 try:
Chris@184 190 nd = int(sys.argv[1])
Chris@184 191 except:
Chris@184 192 nd=None
Chris@184 193 if nd:
Chris@184 194 test_fftnd( nd )
Chris@184 195 else:
Chris@184 196 sys.exit(0)