annotate dsp/chromagram/ConstantQ.cpp @ 74:769da847732b

* A few fixes prompted by vamp-plugin-tester
author cannam
date Mon, 08 Jun 2009 12:30:20 +0000
parents dcb555b90924
children e5907ae6de17
rev   line source
cannam@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
cannam@0 2 /*
cannam@0 3 QM DSP Library
cannam@0 4
cannam@0 5 Centre for Digital Music, Queen Mary, University of London.
cannam@0 6 This file copyright 2005-2006 Christian Landone.
cannam@0 7 All rights reserved.
cannam@0 8 */
cannam@0 9
cannam@0 10 #include "ConstantQ.h"
cannam@0 11 #include "dsp/transforms/FFT.h"
cannam@0 12
cannam@20 13 #include <iostream>
cannam@20 14
cannam@73 15 #ifdef NOT_DEFINED
cannam@73 16 // see note in CQprecalc
cannam@73 17
cannam@51 18 #include "CQprecalc.cpp"
cannam@51 19
cannam@51 20 static bool push_precalculated(int uk, int fftlength,
cannam@51 21 std::vector<unsigned> &is,
cannam@51 22 std::vector<unsigned> &js,
cannam@51 23 std::vector<double> &real,
cannam@51 24 std::vector<double> &imag)
cannam@51 25 {
cannam@51 26 if (uk == 76 && fftlength == 16384) {
cannam@51 27 push_76_16384(is, js, real, imag);
cannam@51 28 return true;
cannam@51 29 }
cannam@51 30 if (uk == 144 && fftlength == 4096) {
cannam@51 31 push_144_4096(is, js, real, imag);
cannam@51 32 return true;
cannam@51 33 }
cannam@51 34 if (uk == 65 && fftlength == 2048) {
cannam@51 35 push_65_2048(is, js, real, imag);
cannam@51 36 return true;
cannam@51 37 }
cannam@51 38 if (uk == 84 && fftlength == 65536) {
cannam@51 39 push_84_65536(is, js, real, imag);
cannam@51 40 return true;
cannam@51 41 }
cannam@51 42 return false;
cannam@51 43 }
cannam@73 44 #endif
cannam@51 45
cannam@0 46 //---------------------------------------------------------------------------
cannam@0 47 // nextpow2 returns the smallest integer n such that 2^n >= x.
cannam@0 48 static double nextpow2(double x) {
cannam@0 49 double y = ceil(log(x)/log(2.0));
cannam@0 50 return(y);
cannam@0 51 }
cannam@0 52
cannam@0 53 static double squaredModule(const double & xx, const double & yy) {
cannam@0 54 return xx*xx + yy*yy;
cannam@0 55 }
cannam@0 56
cannam@0 57 //----------------------------------------------------------------------------
cannam@0 58
cannam@51 59 ConstantQ::ConstantQ( CQConfig Config ) :
cannam@51 60 m_sparseKernel(0)
cannam@0 61 {
cannam@0 62 initialise( Config );
cannam@0 63 }
cannam@0 64
cannam@0 65 ConstantQ::~ConstantQ()
cannam@0 66 {
cannam@0 67 deInitialise();
cannam@0 68 }
cannam@0 69
cannam@0 70 //----------------------------------------------------------------------------
cannam@0 71 void ConstantQ::sparsekernel()
cannam@0 72 {
cannam@51 73 // std::cerr << "ConstantQ: initialising sparse kernel, uK = " << m_uK << ", FFTLength = " << m_FFTLength << "...";
cannam@51 74
cannam@51 75 SparseKernel *sk = new SparseKernel();
cannam@51 76
cannam@73 77 #ifdef NOT_DEFINED
cannam@51 78 if (push_precalculated(m_uK, m_FFTLength,
cannam@51 79 sk->is, sk->js, sk->real, sk->imag)) {
cannam@73 80 // std::cerr << "using precalculated kernel" << std::endl;
cannam@51 81 m_sparseKernel = sk;
cannam@51 82 return;
cannam@51 83 }
cannam@73 84 #endif
cannam@73 85
cannam@0 86 //generates spectral kernel matrix (upside down?)
cannam@0 87 // initialise temporal kernel with zeros, twice length to deal w. complex numbers
cannam@0 88
cannam@0 89 double* hammingWindowRe = new double [ m_FFTLength ];
cannam@0 90 double* hammingWindowIm = new double [ m_FFTLength ];
cannam@0 91 double* transfHammingWindowRe = new double [ m_FFTLength ];
cannam@0 92 double* transfHammingWindowIm = new double [ m_FFTLength ];
cannam@0 93
cannam@0 94 for (unsigned u=0; u < m_FFTLength; u++)
cannam@0 95 {
cannam@0 96 hammingWindowRe[u] = 0;
cannam@0 97 hammingWindowIm[u] = 0;
cannam@0 98 }
cannam@0 99
cannam@0 100 // Here, fftleng*2 is a guess of the number of sparse cells in the matrix
cannam@0 101 // The matrix K x fftlength but the non-zero cells are an antialiased
cannam@0 102 // square root function. So mostly is a line, with some grey point.
cannam@51 103 sk->is.reserve( m_FFTLength*2 );
cannam@51 104 sk->js.reserve( m_FFTLength*2 );
cannam@51 105 sk->real.reserve( m_FFTLength*2 );
cannam@51 106 sk->imag.reserve( m_FFTLength*2 );
cannam@0 107
cannam@0 108 // for each bin value K, calculate temporal kernel, take its fft to
cannam@0 109 //calculate the spectral kernel then threshold it to make it sparse and
cannam@0 110 //add it to the sparse kernels matrix
cannam@0 111 double squareThreshold = m_CQThresh * m_CQThresh;
cannam@0 112
cannam@64 113 FFT m_FFT(m_FFTLength);
cannam@0 114
cannam@0 115 for (unsigned k = m_uK; k--; )
cannam@0 116 {
cannam@3 117 for (unsigned u=0; u < m_FFTLength; u++)
cannam@3 118 {
cannam@3 119 hammingWindowRe[u] = 0;
cannam@3 120 hammingWindowIm[u] = 0;
cannam@3 121 }
cannam@3 122
cannam@0 123 // Computing a hamming window
cannam@0 124 const unsigned hammingLength = (int) ceil( m_dQ * m_FS / ( m_FMin * pow(2,((double)(k))/(double)m_BPO)));
cannam@3 125
cannam@3 126 unsigned origin = m_FFTLength/2 - hammingLength/2;
cannam@3 127
cannam@0 128 for (unsigned i=0; i<hammingLength; i++)
cannam@0 129 {
cannam@0 130 const double angle = 2*PI*m_dQ*i/hammingLength;
cannam@0 131 const double real = cos(angle);
cannam@0 132 const double imag = sin(angle);
cannam@0 133 const double absol = hamming(hammingLength, i)/hammingLength;
cannam@3 134 hammingWindowRe[ origin + i ] = absol*real;
cannam@3 135 hammingWindowIm[ origin + i ] = absol*imag;
cannam@0 136 }
cannam@0 137
cannam@3 138 for (unsigned i = 0; i < m_FFTLength/2; ++i) {
cannam@3 139 double temp = hammingWindowRe[i];
cannam@3 140 hammingWindowRe[i] = hammingWindowRe[i + m_FFTLength/2];
cannam@3 141 hammingWindowRe[i + m_FFTLength/2] = temp;
cannam@3 142 temp = hammingWindowIm[i];
cannam@3 143 hammingWindowIm[i] = hammingWindowIm[i + m_FFTLength/2];
cannam@3 144 hammingWindowIm[i + m_FFTLength/2] = temp;
cannam@3 145 }
cannam@3 146
cannam@0 147 //do fft of hammingWindow
cannam@64 148 m_FFT.process( 0, hammingWindowRe, hammingWindowIm, transfHammingWindowRe, transfHammingWindowIm );
cannam@0 149
cannam@0 150
cannam@0 151 for (unsigned j=0; j<( m_FFTLength ); j++)
cannam@0 152 {
cannam@0 153 // perform thresholding
cannam@0 154 const double squaredBin = squaredModule( transfHammingWindowRe[ j ], transfHammingWindowIm[ j ]);
cannam@0 155 if (squaredBin <= squareThreshold) continue;
cannam@0 156
cannam@0 157 // Insert non-zero position indexes, doubled because they are floats
cannam@51 158 sk->is.push_back(j);
cannam@51 159 sk->js.push_back(k);
cannam@0 160
cannam@0 161 // take conjugate, normalise and add to array sparkernel
cannam@51 162 sk->real.push_back( transfHammingWindowRe[ j ]/m_FFTLength);
cannam@51 163 sk->imag.push_back(-transfHammingWindowIm[ j ]/m_FFTLength);
cannam@0 164 }
cannam@0 165
cannam@0 166 }
cannam@0 167
cannam@0 168 delete [] hammingWindowRe;
cannam@0 169 delete [] hammingWindowIm;
cannam@0 170 delete [] transfHammingWindowRe;
cannam@0 171 delete [] transfHammingWindowIm;
cannam@0 172
cannam@51 173 /*
cannam@51 174 using std::cout;
cannam@51 175 using std::endl;
cannam@51 176
cannam@51 177 cout.precision(28);
cannam@51 178
cannam@51 179 int n = sk->is.size();
cannam@51 180 int w = 8;
cannam@51 181 cout << "static unsigned int sk_i_" << m_uK << "_" << m_FFTLength << "[" << n << "] = {" << endl;
cannam@51 182 for (int i = 0; i < n; ++i) {
cannam@51 183 if (i % w == 0) cout << " ";
cannam@51 184 cout << sk->is[i];
cannam@51 185 if (i + 1 < n) cout << ", ";
cannam@51 186 if (i % w == w-1) cout << endl;
cannam@51 187 };
cannam@51 188 if (n % w != 0) cout << endl;
cannam@51 189 cout << "};" << endl;
cannam@51 190
cannam@51 191 n = sk->js.size();
cannam@51 192 cout << "static unsigned int sk_j_" << m_uK << "_" << m_FFTLength << "[" << n << "] = {" << endl;
cannam@51 193 for (int i = 0; i < n; ++i) {
cannam@51 194 if (i % w == 0) cout << " ";
cannam@51 195 cout << sk->js[i];
cannam@51 196 if (i + 1 < n) cout << ", ";
cannam@51 197 if (i % w == w-1) cout << endl;
cannam@51 198 };
cannam@51 199 if (n % w != 0) cout << endl;
cannam@51 200 cout << "};" << endl;
cannam@51 201
cannam@51 202 w = 2;
cannam@51 203 n = sk->real.size();
cannam@51 204 cout << "static double sk_real_" << m_uK << "_" << m_FFTLength << "[" << n << "] = {" << endl;
cannam@51 205 for (int i = 0; i < n; ++i) {
cannam@51 206 if (i % w == 0) cout << " ";
cannam@51 207 cout << sk->real[i];
cannam@51 208 if (i + 1 < n) cout << ", ";
cannam@51 209 if (i % w == w-1) cout << endl;
cannam@51 210 };
cannam@51 211 if (n % w != 0) cout << endl;
cannam@51 212 cout << "};" << endl;
cannam@51 213
cannam@51 214 n = sk->imag.size();
cannam@51 215 cout << "static double sk_imag_" << m_uK << "_" << m_FFTLength << "[" << n << "] = {" << endl;
cannam@51 216 for (int i = 0; i < n; ++i) {
cannam@51 217 if (i % w == 0) cout << " ";
cannam@51 218 cout << sk->imag[i];
cannam@51 219 if (i + 1 < n) cout << ", ";
cannam@51 220 if (i % w == w-1) cout << endl;
cannam@51 221 };
cannam@51 222 if (n % w != 0) cout << endl;
cannam@51 223 cout << "};" << endl;
cannam@51 224
cannam@51 225 cout << "static void push_" << m_uK << "_" << m_FFTLength << "(vector<unsigned int> &is, vector<unsigned int> &js, vector<double> &real, vector<double> &imag)" << endl;
cannam@51 226 cout << "{\n is.reserve(" << n << ");\n";
cannam@51 227 cout << " js.reserve(" << n << ");\n";
cannam@51 228 cout << " real.reserve(" << n << ");\n";
cannam@51 229 cout << " imag.reserve(" << n << ");\n";
cannam@51 230 cout << " for (int i = 0; i < " << n << "; ++i) {" << endl;
cannam@51 231 cout << " is.push_back(sk_i_" << m_uK << "_" << m_FFTLength << "[i]);" << endl;
cannam@51 232 cout << " js.push_back(sk_j_" << m_uK << "_" << m_FFTLength << "[i]);" << endl;
cannam@51 233 cout << " real.push_back(sk_real_" << m_uK << "_" << m_FFTLength << "[i]);" << endl;
cannam@51 234 cout << " imag.push_back(sk_imag_" << m_uK << "_" << m_FFTLength << "[i]);" << endl;
cannam@51 235 cout << " }" << endl;
cannam@51 236 cout << "}" << endl;
cannam@51 237 */
cannam@51 238 // std::cerr << "done\n -> is: " << sk->is.size() << ", js: " << sk->js.size() << ", reals: " << sk->real.size() << ", imags: " << sk->imag.size() << std::endl;
cannam@51 239
cannam@51 240 m_sparseKernel = sk;
cannam@51 241 return;
cannam@0 242 }
cannam@0 243
cannam@0 244 //-----------------------------------------------------------------------------
cannam@32 245 double* ConstantQ::process( const double* fftdata )
cannam@0 246 {
cannam@51 247 if (!m_sparseKernel) {
cannam@51 248 std::cerr << "ERROR: ConstantQ::process: Sparse kernel has not been initialised" << std::endl;
cannam@51 249 return m_CQdata;
cannam@51 250 }
cannam@51 251
cannam@51 252 SparseKernel *sk = m_sparseKernel;
cannam@51 253
cannam@0 254 for (unsigned row=0; row<2*m_uK; row++)
cannam@0 255 {
cannam@0 256 m_CQdata[ row ] = 0;
cannam@0 257 m_CQdata[ row+1 ] = 0;
cannam@0 258 }
cannam@51 259 const unsigned *fftbin = &(sk->is[0]);
cannam@51 260 const unsigned *cqbin = &(sk->js[0]);
cannam@51 261 const double *real = &(sk->real[0]);
cannam@51 262 const double *imag = &(sk->imag[0]);
cannam@51 263 const unsigned int sparseCells = sk->real.size();
cannam@0 264
cannam@0 265 for (unsigned i = 0; i<sparseCells; i++)
cannam@0 266 {
cannam@0 267 const unsigned row = cqbin[i];
cannam@0 268 const unsigned col = fftbin[i];
cannam@0 269 const double & r1 = real[i];
cannam@0 270 const double & i1 = imag[i];
cannam@38 271 const double & r2 = fftdata[ (2*m_FFTLength) - 2*col - 2 ];
cannam@38 272 const double & i2 = fftdata[ (2*m_FFTLength) - 2*col - 2 + 1 ];
cannam@0 273 // add the multiplication
cannam@0 274 m_CQdata[ 2*row ] += (r1*r2 - i1*i2);
cannam@0 275 m_CQdata[ 2*row+1] += (r1*i2 + i1*r2);
cannam@0 276 }
cannam@0 277
cannam@0 278 return m_CQdata;
cannam@0 279 }
cannam@0 280
cannam@0 281
cannam@0 282 void ConstantQ::initialise( CQConfig Config )
cannam@0 283 {
cannam@0 284 m_FS = Config.FS;
cannam@0 285 m_FMin = Config.min; // min freq
cannam@0 286 m_FMax = Config.max; // max freq
cannam@0 287 m_BPO = Config.BPO; // bins per octave
cannam@0 288 m_CQThresh = Config.CQThresh;// ConstantQ threshold for kernel generation
cannam@0 289
cannam@0 290 m_dQ = 1/(pow(2,(1/(double)m_BPO))-1); // Work out Q value for Filter bank
cannam@0 291 m_uK = (unsigned int) ceil(m_BPO * log(m_FMax/m_FMin)/log(2.0)); // No. of constant Q bins
cannam@0 292
cannam@24 293 // std::cerr << "ConstantQ::initialise: rate = " << m_FS << ", fmin = " << m_FMin << ", fmax = " << m_FMax << ", bpo = " << m_BPO << ", K = " << m_uK << ", Q = " << m_dQ << std::endl;
cannam@20 294
cannam@0 295 // work out length of fft required for this constant Q Filter bank
cannam@0 296 m_FFTLength = (int) pow(2, nextpow2(ceil( m_dQ*m_FS/m_FMin )));
cannam@0 297
cannam@0 298 m_hop = m_FFTLength/8; // <------ hop size is window length divided by 32
cannam@0 299
cannam@24 300 // std::cerr << "ConstantQ::initialise: -> fft length = " << m_FFTLength << ", hop = " << m_hop << std::endl;
cannam@20 301
cannam@0 302 // allocate memory for cqdata
cannam@0 303 m_CQdata = new double [2*m_uK];
cannam@0 304 }
cannam@0 305
cannam@0 306 void ConstantQ::deInitialise()
cannam@0 307 {
cannam@0 308 delete [] m_CQdata;
cannam@51 309 delete m_sparseKernel;
cannam@0 310 }
cannam@0 311
cannam@32 312 void ConstantQ::process(const double *FFTRe, const double* FFTIm,
cannam@32 313 double *CQRe, double *CQIm)
cannam@0 314 {
cannam@51 315 if (!m_sparseKernel) {
cannam@51 316 std::cerr << "ERROR: ConstantQ::process: Sparse kernel has not been initialised" << std::endl;
cannam@51 317 return;
cannam@51 318 }
cannam@51 319
cannam@51 320 SparseKernel *sk = m_sparseKernel;
cannam@51 321
cannam@0 322 for (unsigned row=0; row<m_uK; row++)
cannam@0 323 {
cannam@0 324 CQRe[ row ] = 0;
cannam@0 325 CQIm[ row ] = 0;
cannam@0 326 }
cannam@0 327
cannam@51 328 const unsigned *fftbin = &(sk->is[0]);
cannam@51 329 const unsigned *cqbin = &(sk->js[0]);
cannam@51 330 const double *real = &(sk->real[0]);
cannam@51 331 const double *imag = &(sk->imag[0]);
cannam@51 332 const unsigned int sparseCells = sk->real.size();
cannam@0 333
cannam@0 334 for (unsigned i = 0; i<sparseCells; i++)
cannam@0 335 {
cannam@0 336 const unsigned row = cqbin[i];
cannam@0 337 const unsigned col = fftbin[i];
cannam@0 338 const double & r1 = real[i];
cannam@0 339 const double & i1 = imag[i];
cannam@38 340 const double & r2 = FFTRe[ m_FFTLength - col - 1 ];
cannam@38 341 const double & i2 = FFTIm[ m_FFTLength - col - 1 ];
cannam@0 342 // add the multiplication
cannam@0 343 CQRe[ row ] += (r1*r2 - i1*i2);
cannam@0 344 CQIm[ row ] += (r1*i2 + i1*r2);
cannam@0 345 }
cannam@0 346 }