annotate dsp/chromagram/ConstantQ.cpp @ 51:114e833c07ac

* Do not calculate CQ sparse kernel when chromagram is constructed: only when it's actually used * Pre-calculate CQ sparse kernels in the sizes required for the default configurations of some of our transforms
author cannam
date Thu, 04 Dec 2008 11:59:29 +0000
parents 3dff6e3e2121
children 6cb2b3cd5356
rev   line source
cannam@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
cannam@0 2 /*
cannam@0 3 QM DSP Library
cannam@0 4
cannam@0 5 Centre for Digital Music, Queen Mary, University of London.
cannam@0 6 This file copyright 2005-2006 Christian Landone.
cannam@0 7 All rights reserved.
cannam@0 8 */
cannam@0 9
cannam@0 10 #include "ConstantQ.h"
cannam@0 11 #include "dsp/transforms/FFT.h"
cannam@0 12
cannam@20 13 #include <iostream>
cannam@20 14
cannam@51 15 #include "CQprecalc.cpp"
cannam@51 16
cannam@51 17 static bool push_precalculated(int uk, int fftlength,
cannam@51 18 std::vector<unsigned> &is,
cannam@51 19 std::vector<unsigned> &js,
cannam@51 20 std::vector<double> &real,
cannam@51 21 std::vector<double> &imag)
cannam@51 22 {
cannam@51 23 if (uk == 76 && fftlength == 16384) {
cannam@51 24 push_76_16384(is, js, real, imag);
cannam@51 25 return true;
cannam@51 26 }
cannam@51 27 if (uk == 144 && fftlength == 4096) {
cannam@51 28 push_144_4096(is, js, real, imag);
cannam@51 29 return true;
cannam@51 30 }
cannam@51 31 if (uk == 65 && fftlength == 2048) {
cannam@51 32 push_65_2048(is, js, real, imag);
cannam@51 33 return true;
cannam@51 34 }
cannam@51 35 if (uk == 84 && fftlength == 65536) {
cannam@51 36 push_84_65536(is, js, real, imag);
cannam@51 37 return true;
cannam@51 38 }
cannam@51 39 return false;
cannam@51 40 }
cannam@51 41
cannam@0 42 //---------------------------------------------------------------------------
cannam@0 43 // nextpow2 returns the smallest integer n such that 2^n >= x.
cannam@0 44 static double nextpow2(double x) {
cannam@0 45 double y = ceil(log(x)/log(2.0));
cannam@0 46 return(y);
cannam@0 47 }
cannam@0 48
cannam@0 49 static double squaredModule(const double & xx, const double & yy) {
cannam@0 50 return xx*xx + yy*yy;
cannam@0 51 }
cannam@0 52
cannam@0 53 //----------------------------------------------------------------------------
cannam@0 54
cannam@51 55 ConstantQ::ConstantQ( CQConfig Config ) :
cannam@51 56 m_sparseKernel(0)
cannam@0 57 {
cannam@0 58 initialise( Config );
cannam@0 59 }
cannam@0 60
cannam@0 61 ConstantQ::~ConstantQ()
cannam@0 62 {
cannam@0 63 deInitialise();
cannam@0 64 }
cannam@0 65
cannam@0 66 //----------------------------------------------------------------------------
cannam@0 67 void ConstantQ::sparsekernel()
cannam@0 68 {
cannam@51 69 // std::cerr << "ConstantQ: initialising sparse kernel, uK = " << m_uK << ", FFTLength = " << m_FFTLength << "...";
cannam@51 70
cannam@51 71 SparseKernel *sk = new SparseKernel();
cannam@51 72
cannam@51 73 if (push_precalculated(m_uK, m_FFTLength,
cannam@51 74 sk->is, sk->js, sk->real, sk->imag)) {
cannam@51 75 m_sparseKernel = sk;
cannam@51 76 return;
cannam@51 77 }
cannam@51 78
cannam@0 79 //generates spectral kernel matrix (upside down?)
cannam@0 80 // initialise temporal kernel with zeros, twice length to deal w. complex numbers
cannam@0 81
cannam@0 82 double* hammingWindowRe = new double [ m_FFTLength ];
cannam@0 83 double* hammingWindowIm = new double [ m_FFTLength ];
cannam@0 84 double* transfHammingWindowRe = new double [ m_FFTLength ];
cannam@0 85 double* transfHammingWindowIm = new double [ m_FFTLength ];
cannam@0 86
cannam@0 87 for (unsigned u=0; u < m_FFTLength; u++)
cannam@0 88 {
cannam@0 89 hammingWindowRe[u] = 0;
cannam@0 90 hammingWindowIm[u] = 0;
cannam@0 91 }
cannam@0 92
cannam@0 93 // Here, fftleng*2 is a guess of the number of sparse cells in the matrix
cannam@0 94 // The matrix K x fftlength but the non-zero cells are an antialiased
cannam@0 95 // square root function. So mostly is a line, with some grey point.
cannam@51 96 sk->is.reserve( m_FFTLength*2 );
cannam@51 97 sk->js.reserve( m_FFTLength*2 );
cannam@51 98 sk->real.reserve( m_FFTLength*2 );
cannam@51 99 sk->imag.reserve( m_FFTLength*2 );
cannam@0 100
cannam@0 101 // for each bin value K, calculate temporal kernel, take its fft to
cannam@0 102 //calculate the spectral kernel then threshold it to make it sparse and
cannam@0 103 //add it to the sparse kernels matrix
cannam@0 104 double squareThreshold = m_CQThresh * m_CQThresh;
cannam@0 105
cannam@0 106 FFT m_FFT;
cannam@0 107
cannam@0 108 for (unsigned k = m_uK; k--; )
cannam@0 109 {
cannam@3 110 for (unsigned u=0; u < m_FFTLength; u++)
cannam@3 111 {
cannam@3 112 hammingWindowRe[u] = 0;
cannam@3 113 hammingWindowIm[u] = 0;
cannam@3 114 }
cannam@3 115
cannam@0 116 // Computing a hamming window
cannam@0 117 const unsigned hammingLength = (int) ceil( m_dQ * m_FS / ( m_FMin * pow(2,((double)(k))/(double)m_BPO)));
cannam@3 118
cannam@3 119 unsigned origin = m_FFTLength/2 - hammingLength/2;
cannam@3 120
cannam@0 121 for (unsigned i=0; i<hammingLength; i++)
cannam@0 122 {
cannam@0 123 const double angle = 2*PI*m_dQ*i/hammingLength;
cannam@0 124 const double real = cos(angle);
cannam@0 125 const double imag = sin(angle);
cannam@0 126 const double absol = hamming(hammingLength, i)/hammingLength;
cannam@3 127 hammingWindowRe[ origin + i ] = absol*real;
cannam@3 128 hammingWindowIm[ origin + i ] = absol*imag;
cannam@0 129 }
cannam@0 130
cannam@3 131 for (unsigned i = 0; i < m_FFTLength/2; ++i) {
cannam@3 132 double temp = hammingWindowRe[i];
cannam@3 133 hammingWindowRe[i] = hammingWindowRe[i + m_FFTLength/2];
cannam@3 134 hammingWindowRe[i + m_FFTLength/2] = temp;
cannam@3 135 temp = hammingWindowIm[i];
cannam@3 136 hammingWindowIm[i] = hammingWindowIm[i + m_FFTLength/2];
cannam@3 137 hammingWindowIm[i + m_FFTLength/2] = temp;
cannam@3 138 }
cannam@3 139
cannam@0 140 //do fft of hammingWindow
cannam@0 141 m_FFT.process( m_FFTLength, 0, hammingWindowRe, hammingWindowIm, transfHammingWindowRe, transfHammingWindowIm );
cannam@0 142
cannam@0 143
cannam@0 144 for (unsigned j=0; j<( m_FFTLength ); j++)
cannam@0 145 {
cannam@0 146 // perform thresholding
cannam@0 147 const double squaredBin = squaredModule( transfHammingWindowRe[ j ], transfHammingWindowIm[ j ]);
cannam@0 148 if (squaredBin <= squareThreshold) continue;
cannam@0 149
cannam@0 150 // Insert non-zero position indexes, doubled because they are floats
cannam@51 151 sk->is.push_back(j);
cannam@51 152 sk->js.push_back(k);
cannam@0 153
cannam@0 154 // take conjugate, normalise and add to array sparkernel
cannam@51 155 sk->real.push_back( transfHammingWindowRe[ j ]/m_FFTLength);
cannam@51 156 sk->imag.push_back(-transfHammingWindowIm[ j ]/m_FFTLength);
cannam@0 157 }
cannam@0 158
cannam@0 159 }
cannam@0 160
cannam@0 161 delete [] hammingWindowRe;
cannam@0 162 delete [] hammingWindowIm;
cannam@0 163 delete [] transfHammingWindowRe;
cannam@0 164 delete [] transfHammingWindowIm;
cannam@0 165
cannam@51 166 /*
cannam@51 167 using std::cout;
cannam@51 168 using std::endl;
cannam@51 169
cannam@51 170 cout.precision(28);
cannam@51 171
cannam@51 172 int n = sk->is.size();
cannam@51 173 int w = 8;
cannam@51 174 cout << "static unsigned int sk_i_" << m_uK << "_" << m_FFTLength << "[" << n << "] = {" << endl;
cannam@51 175 for (int i = 0; i < n; ++i) {
cannam@51 176 if (i % w == 0) cout << " ";
cannam@51 177 cout << sk->is[i];
cannam@51 178 if (i + 1 < n) cout << ", ";
cannam@51 179 if (i % w == w-1) cout << endl;
cannam@51 180 };
cannam@51 181 if (n % w != 0) cout << endl;
cannam@51 182 cout << "};" << endl;
cannam@51 183
cannam@51 184 n = sk->js.size();
cannam@51 185 cout << "static unsigned int sk_j_" << m_uK << "_" << m_FFTLength << "[" << n << "] = {" << endl;
cannam@51 186 for (int i = 0; i < n; ++i) {
cannam@51 187 if (i % w == 0) cout << " ";
cannam@51 188 cout << sk->js[i];
cannam@51 189 if (i + 1 < n) cout << ", ";
cannam@51 190 if (i % w == w-1) cout << endl;
cannam@51 191 };
cannam@51 192 if (n % w != 0) cout << endl;
cannam@51 193 cout << "};" << endl;
cannam@51 194
cannam@51 195 w = 2;
cannam@51 196 n = sk->real.size();
cannam@51 197 cout << "static double sk_real_" << m_uK << "_" << m_FFTLength << "[" << n << "] = {" << endl;
cannam@51 198 for (int i = 0; i < n; ++i) {
cannam@51 199 if (i % w == 0) cout << " ";
cannam@51 200 cout << sk->real[i];
cannam@51 201 if (i + 1 < n) cout << ", ";
cannam@51 202 if (i % w == w-1) cout << endl;
cannam@51 203 };
cannam@51 204 if (n % w != 0) cout << endl;
cannam@51 205 cout << "};" << endl;
cannam@51 206
cannam@51 207 n = sk->imag.size();
cannam@51 208 cout << "static double sk_imag_" << m_uK << "_" << m_FFTLength << "[" << n << "] = {" << endl;
cannam@51 209 for (int i = 0; i < n; ++i) {
cannam@51 210 if (i % w == 0) cout << " ";
cannam@51 211 cout << sk->imag[i];
cannam@51 212 if (i + 1 < n) cout << ", ";
cannam@51 213 if (i % w == w-1) cout << endl;
cannam@51 214 };
cannam@51 215 if (n % w != 0) cout << endl;
cannam@51 216 cout << "};" << endl;
cannam@51 217
cannam@51 218 cout << "static void push_" << m_uK << "_" << m_FFTLength << "(vector<unsigned int> &is, vector<unsigned int> &js, vector<double> &real, vector<double> &imag)" << endl;
cannam@51 219 cout << "{\n is.reserve(" << n << ");\n";
cannam@51 220 cout << " js.reserve(" << n << ");\n";
cannam@51 221 cout << " real.reserve(" << n << ");\n";
cannam@51 222 cout << " imag.reserve(" << n << ");\n";
cannam@51 223 cout << " for (int i = 0; i < " << n << "; ++i) {" << endl;
cannam@51 224 cout << " is.push_back(sk_i_" << m_uK << "_" << m_FFTLength << "[i]);" << endl;
cannam@51 225 cout << " js.push_back(sk_j_" << m_uK << "_" << m_FFTLength << "[i]);" << endl;
cannam@51 226 cout << " real.push_back(sk_real_" << m_uK << "_" << m_FFTLength << "[i]);" << endl;
cannam@51 227 cout << " imag.push_back(sk_imag_" << m_uK << "_" << m_FFTLength << "[i]);" << endl;
cannam@51 228 cout << " }" << endl;
cannam@51 229 cout << "}" << endl;
cannam@51 230 */
cannam@51 231 // std::cerr << "done\n -> is: " << sk->is.size() << ", js: " << sk->js.size() << ", reals: " << sk->real.size() << ", imags: " << sk->imag.size() << std::endl;
cannam@51 232
cannam@51 233 m_sparseKernel = sk;
cannam@51 234 return;
cannam@0 235 }
cannam@0 236
cannam@0 237 //-----------------------------------------------------------------------------
cannam@32 238 double* ConstantQ::process( const double* fftdata )
cannam@0 239 {
cannam@51 240 if (!m_sparseKernel) {
cannam@51 241 std::cerr << "ERROR: ConstantQ::process: Sparse kernel has not been initialised" << std::endl;
cannam@51 242 return m_CQdata;
cannam@51 243 }
cannam@51 244
cannam@51 245 SparseKernel *sk = m_sparseKernel;
cannam@51 246
cannam@0 247 for (unsigned row=0; row<2*m_uK; row++)
cannam@0 248 {
cannam@0 249 m_CQdata[ row ] = 0;
cannam@0 250 m_CQdata[ row+1 ] = 0;
cannam@0 251 }
cannam@51 252 const unsigned *fftbin = &(sk->is[0]);
cannam@51 253 const unsigned *cqbin = &(sk->js[0]);
cannam@51 254 const double *real = &(sk->real[0]);
cannam@51 255 const double *imag = &(sk->imag[0]);
cannam@51 256 const unsigned int sparseCells = sk->real.size();
cannam@0 257
cannam@0 258 for (unsigned i = 0; i<sparseCells; i++)
cannam@0 259 {
cannam@0 260 const unsigned row = cqbin[i];
cannam@0 261 const unsigned col = fftbin[i];
cannam@0 262 const double & r1 = real[i];
cannam@0 263 const double & i1 = imag[i];
cannam@38 264 const double & r2 = fftdata[ (2*m_FFTLength) - 2*col - 2 ];
cannam@38 265 const double & i2 = fftdata[ (2*m_FFTLength) - 2*col - 2 + 1 ];
cannam@0 266 // add the multiplication
cannam@0 267 m_CQdata[ 2*row ] += (r1*r2 - i1*i2);
cannam@0 268 m_CQdata[ 2*row+1] += (r1*i2 + i1*r2);
cannam@0 269 }
cannam@0 270
cannam@0 271 return m_CQdata;
cannam@0 272 }
cannam@0 273
cannam@0 274
cannam@0 275 void ConstantQ::initialise( CQConfig Config )
cannam@0 276 {
cannam@0 277 m_FS = Config.FS;
cannam@0 278 m_FMin = Config.min; // min freq
cannam@0 279 m_FMax = Config.max; // max freq
cannam@0 280 m_BPO = Config.BPO; // bins per octave
cannam@0 281 m_CQThresh = Config.CQThresh;// ConstantQ threshold for kernel generation
cannam@0 282
cannam@0 283 m_dQ = 1/(pow(2,(1/(double)m_BPO))-1); // Work out Q value for Filter bank
cannam@0 284 m_uK = (unsigned int) ceil(m_BPO * log(m_FMax/m_FMin)/log(2.0)); // No. of constant Q bins
cannam@0 285
cannam@24 286 // std::cerr << "ConstantQ::initialise: rate = " << m_FS << ", fmin = " << m_FMin << ", fmax = " << m_FMax << ", bpo = " << m_BPO << ", K = " << m_uK << ", Q = " << m_dQ << std::endl;
cannam@20 287
cannam@0 288 // work out length of fft required for this constant Q Filter bank
cannam@0 289 m_FFTLength = (int) pow(2, nextpow2(ceil( m_dQ*m_FS/m_FMin )));
cannam@0 290
cannam@0 291 m_hop = m_FFTLength/8; // <------ hop size is window length divided by 32
cannam@0 292
cannam@24 293 // std::cerr << "ConstantQ::initialise: -> fft length = " << m_FFTLength << ", hop = " << m_hop << std::endl;
cannam@20 294
cannam@0 295 // allocate memory for cqdata
cannam@0 296 m_CQdata = new double [2*m_uK];
cannam@0 297 }
cannam@0 298
cannam@0 299 void ConstantQ::deInitialise()
cannam@0 300 {
cannam@0 301 delete [] m_CQdata;
cannam@51 302 delete m_sparseKernel;
cannam@0 303 }
cannam@0 304
cannam@32 305 void ConstantQ::process(const double *FFTRe, const double* FFTIm,
cannam@32 306 double *CQRe, double *CQIm)
cannam@0 307 {
cannam@51 308 if (!m_sparseKernel) {
cannam@51 309 std::cerr << "ERROR: ConstantQ::process: Sparse kernel has not been initialised" << std::endl;
cannam@51 310 return;
cannam@51 311 }
cannam@51 312
cannam@51 313 SparseKernel *sk = m_sparseKernel;
cannam@51 314
cannam@0 315 for (unsigned row=0; row<m_uK; row++)
cannam@0 316 {
cannam@0 317 CQRe[ row ] = 0;
cannam@0 318 CQIm[ row ] = 0;
cannam@0 319 }
cannam@0 320
cannam@51 321 const unsigned *fftbin = &(sk->is[0]);
cannam@51 322 const unsigned *cqbin = &(sk->js[0]);
cannam@51 323 const double *real = &(sk->real[0]);
cannam@51 324 const double *imag = &(sk->imag[0]);
cannam@51 325 const unsigned int sparseCells = sk->real.size();
cannam@0 326
cannam@0 327 for (unsigned i = 0; i<sparseCells; i++)
cannam@0 328 {
cannam@0 329 const unsigned row = cqbin[i];
cannam@0 330 const unsigned col = fftbin[i];
cannam@0 331 const double & r1 = real[i];
cannam@0 332 const double & i1 = imag[i];
cannam@38 333 const double & r2 = FFTRe[ m_FFTLength - col - 1 ];
cannam@38 334 const double & i2 = FFTIm[ m_FFTLength - col - 1 ];
cannam@0 335 // add the multiplication
cannam@0 336 CQRe[ row ] += (r1*r2 - i1*i2);
cannam@0 337 CQIm[ row ] += (r1*i2 + i1*r2);
cannam@0 338 }
cannam@0 339 }