annotate dsp/tonal/ChangeDetectionFunction.cpp @ 225:49844bc8a895

* Queen Mary C++ DSP library
author Chris Cannam <c.cannam@qmul.ac.uk>
date Wed, 05 Apr 2006 17:35:59 +0000
parents
children 980b1a3b9cbe
rev   line source
c@225 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@225 2
c@225 3 /*
c@225 4 QM DSP Library
c@225 5
c@225 6 Centre for Digital Music, Queen Mary, University of London.
c@225 7 This file copyright 2006 Martin Gasser.
c@225 8 All rights reserved.
c@225 9 */
c@225 10
c@225 11 #include "ChangeDetectionFunction.h"
c@225 12
c@225 13 #ifndef PI
c@225 14 #define PI (3.14159265358979232846)
c@225 15 #endif
c@225 16
c@225 17
c@225 18
c@225 19 ChangeDetectionFunction::ChangeDetectionFunction(ChangeDFConfig config) :
c@225 20 m_dFilterSigma(0.0), m_iFilterWidth(0)
c@225 21 {
c@225 22 setFilterWidth(config.smoothingWidth);
c@225 23 }
c@225 24
c@225 25 ChangeDetectionFunction::~ChangeDetectionFunction()
c@225 26 {
c@225 27 }
c@225 28
c@225 29 void ChangeDetectionFunction::setFilterWidth(const int iWidth)
c@225 30 {
c@225 31 m_iFilterWidth = iWidth*2+1;
c@225 32
c@225 33 // it is assumed that the gaussian is 0 outside of +/- FWHM
c@225 34 // => filter width = 2*FWHM = 2*2.3548*sigma
c@225 35 m_dFilterSigma = double(m_iFilterWidth) / double(2*2.3548);
c@225 36 m_vaGaussian.resize(m_iFilterWidth);
c@225 37
c@225 38 double dScale = 1.0 / (m_dFilterSigma*sqrt(2*PI));
c@225 39
c@225 40 for (int x = -(m_iFilterWidth-1)/2; x <= (m_iFilterWidth-1)/2; x++)
c@225 41 {
c@225 42 double w = dScale * std::exp ( -(x*x)/(2*m_dFilterSigma*m_dFilterSigma) );
c@225 43 m_vaGaussian[x + (m_iFilterWidth-1)/2] = w;
c@225 44 }
c@225 45
c@225 46 #ifdef DEBUG_CHANGE_DETECTION_FUNCTION
c@225 47 std::cout << "Filter sigma: " << m_dFilterSigma << std::endl;
c@225 48 std::cout << "Filter width: " << m_iFilterWidth << std::endl;
c@225 49 #endif
c@225 50 }
c@225 51
c@225 52
c@225 53 ChangeDistance ChangeDetectionFunction::process(const TCSGram& rTCSGram)
c@225 54 {
c@225 55 ChangeDistance retVal;
c@225 56 retVal.resize(rTCSGram.getSize(), 0.0);
c@225 57
c@225 58 TCSGram smoothedTCSGram;
c@225 59
c@225 60 for (int iPosition = 0; iPosition < rTCSGram.getSize(); iPosition++)
c@225 61 {
c@225 62 int iSkipLower = 0;
c@225 63
c@225 64 int iLowerPos = iPosition - (m_iFilterWidth-1)/2;
c@225 65 int iUpperPos = iPosition + (m_iFilterWidth-1)/2;
c@225 66
c@225 67 if (iLowerPos < 0)
c@225 68 {
c@225 69 iSkipLower = -iLowerPos;
c@225 70 iLowerPos = 0;
c@225 71 }
c@225 72
c@225 73 if (iUpperPos >= rTCSGram.getSize())
c@225 74 {
c@225 75 int iMaxIndex = rTCSGram.getSize() - 1;
c@225 76 iUpperPos = iMaxIndex;
c@225 77 }
c@225 78
c@225 79 TCSVector smoothedVector;
c@225 80
c@225 81 // for every bin of the vector, calculate the smoothed value
c@225 82 for (int iPC = 0; iPC < 6; iPC++)
c@225 83 {
c@225 84 size_t j = 0;
c@225 85 double dSmoothedValue = 0.0;
c@225 86 TCSVector rCV;
c@225 87
c@225 88 for (int i = iLowerPos; i <= iUpperPos; i++)
c@225 89 {
c@225 90 rTCSGram.getTCSVector(i, rCV);
c@225 91 dSmoothedValue += m_vaGaussian[iSkipLower + j++] * rCV[iPC];
c@225 92 }
c@225 93
c@225 94 smoothedVector[iPC] = dSmoothedValue;
c@225 95 }
c@225 96
c@225 97 smoothedTCSGram.addTCSVector(smoothedVector);
c@225 98 }
c@225 99
c@225 100 for (int iPosition = 0; iPosition < rTCSGram.getSize(); iPosition++)
c@225 101 {
c@225 102 /*
c@225 103 TODO: calculate a confidence measure for the current estimation
c@225 104 if the current estimate is not confident enough, look further into the future/the past
c@225 105 e.g., High frequency content, zero crossing rate, spectral flatness
c@225 106 */
c@225 107
c@225 108 TCSVector nextTCS;
c@225 109 TCSVector previousTCS;
c@225 110
c@225 111 int iWindow = 1;
c@225 112
c@225 113 // while (previousTCS.magnitude() < 0.1 && (iPosition-iWindow) > 0)
c@225 114 {
c@225 115 smoothedTCSGram.getTCSVector(iPosition-iWindow, previousTCS);
c@225 116 // std::cout << previousTCS.magnitude() << std::endl;
c@225 117 iWindow++;
c@225 118 }
c@225 119
c@225 120 iWindow = 1;
c@225 121
c@225 122 // while (nextTCS.magnitude() < 0.1 && (iPosition+iWindow) < (rTCSGram.getSize()-1) )
c@225 123 {
c@225 124 smoothedTCSGram.getTCSVector(iPosition+iWindow, nextTCS);
c@225 125 iWindow++;
c@225 126 }
c@225 127
c@225 128 double distance = 0.0;
c@225 129 // Euclidean distance
c@225 130 for (size_t j = 0; j < 6; j++)
c@225 131 {
c@225 132 distance += std::pow(nextTCS[j] - previousTCS[j], 2.0);
c@225 133 }
c@225 134
c@225 135 retVal[iPosition] = std::pow(distance, 0.5);
c@225 136 }
c@225 137
c@225 138 return retVal;
c@225 139 }