annotate ext/cblas/src/dgemm.c @ 202:45330e0d2819 clapack-included

Add the CLAPACK and CBLAS/F2C-BLAS files we use
author Chris Cannam
date Fri, 30 Sep 2016 15:51:22 +0100
parents
children
rev   line source
Chris@202 1 /* dgemm.f -- translated by f2c (version 20061008).
Chris@202 2 You must link the resulting object file with libf2c:
Chris@202 3 on Microsoft Windows system, link with libf2c.lib;
Chris@202 4 on Linux or Unix systems, link with .../path/to/libf2c.a -lm
Chris@202 5 or, if you install libf2c.a in a standard place, with -lf2c -lm
Chris@202 6 -- in that order, at the end of the command line, as in
Chris@202 7 cc *.o -lf2c -lm
Chris@202 8 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
Chris@202 9
Chris@202 10 http://www.netlib.org/f2c/libf2c.zip
Chris@202 11 */
Chris@202 12
Chris@202 13 #include "f2c.h"
Chris@202 14 #include "blaswrap.h"
Chris@202 15
Chris@202 16 /* Subroutine */ int dgemm_(char *transa, char *transb, integer *m, integer *
Chris@202 17 n, integer *k, doublereal *alpha, doublereal *a, integer *lda,
Chris@202 18 doublereal *b, integer *ldb, doublereal *beta, doublereal *c__,
Chris@202 19 integer *ldc)
Chris@202 20 {
Chris@202 21 /* System generated locals */
Chris@202 22 integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
Chris@202 23 i__3;
Chris@202 24
Chris@202 25 /* Local variables */
Chris@202 26 integer i__, j, l, info;
Chris@202 27 logical nota, notb;
Chris@202 28 doublereal temp;
Chris@202 29 integer ncola;
Chris@202 30 extern logical lsame_(char *, char *);
Chris@202 31 integer nrowa, nrowb;
Chris@202 32 extern /* Subroutine */ int xerbla_(char *, integer *);
Chris@202 33
Chris@202 34 /* .. Scalar Arguments .. */
Chris@202 35 /* .. */
Chris@202 36 /* .. Array Arguments .. */
Chris@202 37 /* .. */
Chris@202 38
Chris@202 39 /* Purpose */
Chris@202 40 /* ======= */
Chris@202 41
Chris@202 42 /* DGEMM performs one of the matrix-matrix operations */
Chris@202 43
Chris@202 44 /* C := alpha*op( A )*op( B ) + beta*C, */
Chris@202 45
Chris@202 46 /* where op( X ) is one of */
Chris@202 47
Chris@202 48 /* op( X ) = X or op( X ) = X', */
Chris@202 49
Chris@202 50 /* alpha and beta are scalars, and A, B and C are matrices, with op( A ) */
Chris@202 51 /* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. */
Chris@202 52
Chris@202 53 /* Arguments */
Chris@202 54 /* ========== */
Chris@202 55
Chris@202 56 /* TRANSA - CHARACTER*1. */
Chris@202 57 /* On entry, TRANSA specifies the form of op( A ) to be used in */
Chris@202 58 /* the matrix multiplication as follows: */
Chris@202 59
Chris@202 60 /* TRANSA = 'N' or 'n', op( A ) = A. */
Chris@202 61
Chris@202 62 /* TRANSA = 'T' or 't', op( A ) = A'. */
Chris@202 63
Chris@202 64 /* TRANSA = 'C' or 'c', op( A ) = A'. */
Chris@202 65
Chris@202 66 /* Unchanged on exit. */
Chris@202 67
Chris@202 68 /* TRANSB - CHARACTER*1. */
Chris@202 69 /* On entry, TRANSB specifies the form of op( B ) to be used in */
Chris@202 70 /* the matrix multiplication as follows: */
Chris@202 71
Chris@202 72 /* TRANSB = 'N' or 'n', op( B ) = B. */
Chris@202 73
Chris@202 74 /* TRANSB = 'T' or 't', op( B ) = B'. */
Chris@202 75
Chris@202 76 /* TRANSB = 'C' or 'c', op( B ) = B'. */
Chris@202 77
Chris@202 78 /* Unchanged on exit. */
Chris@202 79
Chris@202 80 /* M - INTEGER. */
Chris@202 81 /* On entry, M specifies the number of rows of the matrix */
Chris@202 82 /* op( A ) and of the matrix C. M must be at least zero. */
Chris@202 83 /* Unchanged on exit. */
Chris@202 84
Chris@202 85 /* N - INTEGER. */
Chris@202 86 /* On entry, N specifies the number of columns of the matrix */
Chris@202 87 /* op( B ) and the number of columns of the matrix C. N must be */
Chris@202 88 /* at least zero. */
Chris@202 89 /* Unchanged on exit. */
Chris@202 90
Chris@202 91 /* K - INTEGER. */
Chris@202 92 /* On entry, K specifies the number of columns of the matrix */
Chris@202 93 /* op( A ) and the number of rows of the matrix op( B ). K must */
Chris@202 94 /* be at least zero. */
Chris@202 95 /* Unchanged on exit. */
Chris@202 96
Chris@202 97 /* ALPHA - DOUBLE PRECISION. */
Chris@202 98 /* On entry, ALPHA specifies the scalar alpha. */
Chris@202 99 /* Unchanged on exit. */
Chris@202 100
Chris@202 101 /* A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is */
Chris@202 102 /* k when TRANSA = 'N' or 'n', and is m otherwise. */
Chris@202 103 /* Before entry with TRANSA = 'N' or 'n', the leading m by k */
Chris@202 104 /* part of the array A must contain the matrix A, otherwise */
Chris@202 105 /* the leading k by m part of the array A must contain the */
Chris@202 106 /* matrix A. */
Chris@202 107 /* Unchanged on exit. */
Chris@202 108
Chris@202 109 /* LDA - INTEGER. */
Chris@202 110 /* On entry, LDA specifies the first dimension of A as declared */
Chris@202 111 /* in the calling (sub) program. When TRANSA = 'N' or 'n' then */
Chris@202 112 /* LDA must be at least max( 1, m ), otherwise LDA must be at */
Chris@202 113 /* least max( 1, k ). */
Chris@202 114 /* Unchanged on exit. */
Chris@202 115
Chris@202 116 /* B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is */
Chris@202 117 /* n when TRANSB = 'N' or 'n', and is k otherwise. */
Chris@202 118 /* Before entry with TRANSB = 'N' or 'n', the leading k by n */
Chris@202 119 /* part of the array B must contain the matrix B, otherwise */
Chris@202 120 /* the leading n by k part of the array B must contain the */
Chris@202 121 /* matrix B. */
Chris@202 122 /* Unchanged on exit. */
Chris@202 123
Chris@202 124 /* LDB - INTEGER. */
Chris@202 125 /* On entry, LDB specifies the first dimension of B as declared */
Chris@202 126 /* in the calling (sub) program. When TRANSB = 'N' or 'n' then */
Chris@202 127 /* LDB must be at least max( 1, k ), otherwise LDB must be at */
Chris@202 128 /* least max( 1, n ). */
Chris@202 129 /* Unchanged on exit. */
Chris@202 130
Chris@202 131 /* BETA - DOUBLE PRECISION. */
Chris@202 132 /* On entry, BETA specifies the scalar beta. When BETA is */
Chris@202 133 /* supplied as zero then C need not be set on input. */
Chris@202 134 /* Unchanged on exit. */
Chris@202 135
Chris@202 136 /* C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). */
Chris@202 137 /* Before entry, the leading m by n part of the array C must */
Chris@202 138 /* contain the matrix C, except when beta is zero, in which */
Chris@202 139 /* case C need not be set on entry. */
Chris@202 140 /* On exit, the array C is overwritten by the m by n matrix */
Chris@202 141 /* ( alpha*op( A )*op( B ) + beta*C ). */
Chris@202 142
Chris@202 143 /* LDC - INTEGER. */
Chris@202 144 /* On entry, LDC specifies the first dimension of C as declared */
Chris@202 145 /* in the calling (sub) program. LDC must be at least */
Chris@202 146 /* max( 1, m ). */
Chris@202 147 /* Unchanged on exit. */
Chris@202 148
Chris@202 149
Chris@202 150 /* Level 3 Blas routine. */
Chris@202 151
Chris@202 152 /* -- Written on 8-February-1989. */
Chris@202 153 /* Jack Dongarra, Argonne National Laboratory. */
Chris@202 154 /* Iain Duff, AERE Harwell. */
Chris@202 155 /* Jeremy Du Croz, Numerical Algorithms Group Ltd. */
Chris@202 156 /* Sven Hammarling, Numerical Algorithms Group Ltd. */
Chris@202 157
Chris@202 158
Chris@202 159 /* .. External Functions .. */
Chris@202 160 /* .. */
Chris@202 161 /* .. External Subroutines .. */
Chris@202 162 /* .. */
Chris@202 163 /* .. Intrinsic Functions .. */
Chris@202 164 /* .. */
Chris@202 165 /* .. Local Scalars .. */
Chris@202 166 /* .. */
Chris@202 167 /* .. Parameters .. */
Chris@202 168 /* .. */
Chris@202 169
Chris@202 170 /* Set NOTA and NOTB as true if A and B respectively are not */
Chris@202 171 /* transposed and set NROWA, NCOLA and NROWB as the number of rows */
Chris@202 172 /* and columns of A and the number of rows of B respectively. */
Chris@202 173
Chris@202 174 /* Parameter adjustments */
Chris@202 175 a_dim1 = *lda;
Chris@202 176 a_offset = 1 + a_dim1;
Chris@202 177 a -= a_offset;
Chris@202 178 b_dim1 = *ldb;
Chris@202 179 b_offset = 1 + b_dim1;
Chris@202 180 b -= b_offset;
Chris@202 181 c_dim1 = *ldc;
Chris@202 182 c_offset = 1 + c_dim1;
Chris@202 183 c__ -= c_offset;
Chris@202 184
Chris@202 185 /* Function Body */
Chris@202 186 nota = lsame_(transa, "N");
Chris@202 187 notb = lsame_(transb, "N");
Chris@202 188 if (nota) {
Chris@202 189 nrowa = *m;
Chris@202 190 ncola = *k;
Chris@202 191 } else {
Chris@202 192 nrowa = *k;
Chris@202 193 ncola = *m;
Chris@202 194 }
Chris@202 195 if (notb) {
Chris@202 196 nrowb = *k;
Chris@202 197 } else {
Chris@202 198 nrowb = *n;
Chris@202 199 }
Chris@202 200
Chris@202 201 /* Test the input parameters. */
Chris@202 202
Chris@202 203 info = 0;
Chris@202 204 if (! nota && ! lsame_(transa, "C") && ! lsame_(
Chris@202 205 transa, "T")) {
Chris@202 206 info = 1;
Chris@202 207 } else if (! notb && ! lsame_(transb, "C") && !
Chris@202 208 lsame_(transb, "T")) {
Chris@202 209 info = 2;
Chris@202 210 } else if (*m < 0) {
Chris@202 211 info = 3;
Chris@202 212 } else if (*n < 0) {
Chris@202 213 info = 4;
Chris@202 214 } else if (*k < 0) {
Chris@202 215 info = 5;
Chris@202 216 } else if (*lda < max(1,nrowa)) {
Chris@202 217 info = 8;
Chris@202 218 } else if (*ldb < max(1,nrowb)) {
Chris@202 219 info = 10;
Chris@202 220 } else if (*ldc < max(1,*m)) {
Chris@202 221 info = 13;
Chris@202 222 }
Chris@202 223 if (info != 0) {
Chris@202 224 xerbla_("DGEMM ", &info);
Chris@202 225 return 0;
Chris@202 226 }
Chris@202 227
Chris@202 228 /* Quick return if possible. */
Chris@202 229
Chris@202 230 if (*m == 0 || *n == 0 || (*alpha == 0. || *k == 0) && *beta == 1.) {
Chris@202 231 return 0;
Chris@202 232 }
Chris@202 233
Chris@202 234 /* And if alpha.eq.zero. */
Chris@202 235
Chris@202 236 if (*alpha == 0.) {
Chris@202 237 if (*beta == 0.) {
Chris@202 238 i__1 = *n;
Chris@202 239 for (j = 1; j <= i__1; ++j) {
Chris@202 240 i__2 = *m;
Chris@202 241 for (i__ = 1; i__ <= i__2; ++i__) {
Chris@202 242 c__[i__ + j * c_dim1] = 0.;
Chris@202 243 /* L10: */
Chris@202 244 }
Chris@202 245 /* L20: */
Chris@202 246 }
Chris@202 247 } else {
Chris@202 248 i__1 = *n;
Chris@202 249 for (j = 1; j <= i__1; ++j) {
Chris@202 250 i__2 = *m;
Chris@202 251 for (i__ = 1; i__ <= i__2; ++i__) {
Chris@202 252 c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
Chris@202 253 /* L30: */
Chris@202 254 }
Chris@202 255 /* L40: */
Chris@202 256 }
Chris@202 257 }
Chris@202 258 return 0;
Chris@202 259 }
Chris@202 260
Chris@202 261 /* Start the operations. */
Chris@202 262
Chris@202 263 if (notb) {
Chris@202 264 if (nota) {
Chris@202 265
Chris@202 266 /* Form C := alpha*A*B + beta*C. */
Chris@202 267
Chris@202 268 i__1 = *n;
Chris@202 269 for (j = 1; j <= i__1; ++j) {
Chris@202 270 if (*beta == 0.) {
Chris@202 271 i__2 = *m;
Chris@202 272 for (i__ = 1; i__ <= i__2; ++i__) {
Chris@202 273 c__[i__ + j * c_dim1] = 0.;
Chris@202 274 /* L50: */
Chris@202 275 }
Chris@202 276 } else if (*beta != 1.) {
Chris@202 277 i__2 = *m;
Chris@202 278 for (i__ = 1; i__ <= i__2; ++i__) {
Chris@202 279 c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
Chris@202 280 /* L60: */
Chris@202 281 }
Chris@202 282 }
Chris@202 283 i__2 = *k;
Chris@202 284 for (l = 1; l <= i__2; ++l) {
Chris@202 285 if (b[l + j * b_dim1] != 0.) {
Chris@202 286 temp = *alpha * b[l + j * b_dim1];
Chris@202 287 i__3 = *m;
Chris@202 288 for (i__ = 1; i__ <= i__3; ++i__) {
Chris@202 289 c__[i__ + j * c_dim1] += temp * a[i__ + l *
Chris@202 290 a_dim1];
Chris@202 291 /* L70: */
Chris@202 292 }
Chris@202 293 }
Chris@202 294 /* L80: */
Chris@202 295 }
Chris@202 296 /* L90: */
Chris@202 297 }
Chris@202 298 } else {
Chris@202 299
Chris@202 300 /* Form C := alpha*A'*B + beta*C */
Chris@202 301
Chris@202 302 i__1 = *n;
Chris@202 303 for (j = 1; j <= i__1; ++j) {
Chris@202 304 i__2 = *m;
Chris@202 305 for (i__ = 1; i__ <= i__2; ++i__) {
Chris@202 306 temp = 0.;
Chris@202 307 i__3 = *k;
Chris@202 308 for (l = 1; l <= i__3; ++l) {
Chris@202 309 temp += a[l + i__ * a_dim1] * b[l + j * b_dim1];
Chris@202 310 /* L100: */
Chris@202 311 }
Chris@202 312 if (*beta == 0.) {
Chris@202 313 c__[i__ + j * c_dim1] = *alpha * temp;
Chris@202 314 } else {
Chris@202 315 c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
Chris@202 316 i__ + j * c_dim1];
Chris@202 317 }
Chris@202 318 /* L110: */
Chris@202 319 }
Chris@202 320 /* L120: */
Chris@202 321 }
Chris@202 322 }
Chris@202 323 } else {
Chris@202 324 if (nota) {
Chris@202 325
Chris@202 326 /* Form C := alpha*A*B' + beta*C */
Chris@202 327
Chris@202 328 i__1 = *n;
Chris@202 329 for (j = 1; j <= i__1; ++j) {
Chris@202 330 if (*beta == 0.) {
Chris@202 331 i__2 = *m;
Chris@202 332 for (i__ = 1; i__ <= i__2; ++i__) {
Chris@202 333 c__[i__ + j * c_dim1] = 0.;
Chris@202 334 /* L130: */
Chris@202 335 }
Chris@202 336 } else if (*beta != 1.) {
Chris@202 337 i__2 = *m;
Chris@202 338 for (i__ = 1; i__ <= i__2; ++i__) {
Chris@202 339 c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
Chris@202 340 /* L140: */
Chris@202 341 }
Chris@202 342 }
Chris@202 343 i__2 = *k;
Chris@202 344 for (l = 1; l <= i__2; ++l) {
Chris@202 345 if (b[j + l * b_dim1] != 0.) {
Chris@202 346 temp = *alpha * b[j + l * b_dim1];
Chris@202 347 i__3 = *m;
Chris@202 348 for (i__ = 1; i__ <= i__3; ++i__) {
Chris@202 349 c__[i__ + j * c_dim1] += temp * a[i__ + l *
Chris@202 350 a_dim1];
Chris@202 351 /* L150: */
Chris@202 352 }
Chris@202 353 }
Chris@202 354 /* L160: */
Chris@202 355 }
Chris@202 356 /* L170: */
Chris@202 357 }
Chris@202 358 } else {
Chris@202 359
Chris@202 360 /* Form C := alpha*A'*B' + beta*C */
Chris@202 361
Chris@202 362 i__1 = *n;
Chris@202 363 for (j = 1; j <= i__1; ++j) {
Chris@202 364 i__2 = *m;
Chris@202 365 for (i__ = 1; i__ <= i__2; ++i__) {
Chris@202 366 temp = 0.;
Chris@202 367 i__3 = *k;
Chris@202 368 for (l = 1; l <= i__3; ++l) {
Chris@202 369 temp += a[l + i__ * a_dim1] * b[j + l * b_dim1];
Chris@202 370 /* L180: */
Chris@202 371 }
Chris@202 372 if (*beta == 0.) {
Chris@202 373 c__[i__ + j * c_dim1] = *alpha * temp;
Chris@202 374 } else {
Chris@202 375 c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
Chris@202 376 i__ + j * c_dim1];
Chris@202 377 }
Chris@202 378 /* L190: */
Chris@202 379 }
Chris@202 380 /* L200: */
Chris@202 381 }
Chris@202 382 }
Chris@202 383 }
Chris@202 384
Chris@202 385 return 0;
Chris@202 386
Chris@202 387 /* End of DGEMM . */
Chris@202 388
Chris@202 389 } /* dgemm_ */