annotate dsp/tempotracking/TempoTrackV2.cpp @ 282:2703b3437aee

* remove some debug output
author Chris Cannam <c.cannam@qmul.ac.uk>
date Fri, 27 Feb 2009 13:07:22 +0000
parents 33e03341d541
children c3cdb404f807
rev   line source
c@277 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@277 2
c@277 3 /*
c@277 4 QM DSP Library
c@277 5
c@277 6 Centre for Digital Music, Queen Mary, University of London.
c@277 7 This file copyright 2008-2009 Matthew Davies and QMUL.
c@277 8 All rights reserved.
c@277 9 */
c@277 10
c@277 11 #include "TempoTrackV2.h"
c@277 12
c@277 13 #include <cmath>
c@277 14 #include <cstdlib>
c@278 15 #include <iostream>
c@277 16
c@279 17 #include "maths/MathUtilities.h"
c@277 18
c@277 19 #define EPS 0.0000008 // just some arbitrary small number
c@277 20
c@279 21 TempoTrackV2::TempoTrackV2(float rate, size_t increment) :
c@279 22 m_rate(rate), m_increment(increment) { }
c@277 23 TempoTrackV2::~TempoTrackV2() { }
c@277 24
c@277 25 void
c@277 26 TempoTrackV2::filter_df(d_vec_t &df)
c@277 27 {
c@278 28 d_vec_t a(3);
c@278 29 d_vec_t b(3);
c@278 30 d_vec_t lp_df(df.size());
c@277 31
c@278 32 //equivalent in matlab to [b,a] = butter(2,0.4);
c@278 33 a[0] = 1.0000;
c@278 34 a[1] = -0.3695;
c@278 35 a[2] = 0.1958;
c@278 36 b[0] = 0.2066;
c@278 37 b[1] = 0.4131;
c@278 38 b[2] = 0.2066;
c@278 39
c@278 40 double inp1 = 0.;
c@278 41 double inp2 = 0.;
c@278 42 double out1 = 0.;
c@278 43 double out2 = 0.;
c@277 44
c@277 45
c@278 46 // forwards filtering
c@278 47 for (uint i = 0;i < df.size();i++)
c@278 48 {
c@278 49 lp_df[i] = b[0]*df[i] + b[1]*inp1 + b[2]*inp2 - a[1]*out1 - a[2]*out2;
c@278 50 inp2 = inp1;
c@278 51 inp1 = df[i];
c@278 52 out2 = out1;
c@278 53 out1 = lp_df[i];
c@278 54 }
c@277 55
c@278 56 // copy forwards filtering to df...
c@278 57 // but, time-reversed, ready for backwards filtering
c@278 58 for (uint i = 0;i < df.size();i++)
c@278 59 {
c@278 60 df[i] = lp_df[df.size()-i-1];
c@278 61 }
c@277 62
c@278 63 for (uint i = 0;i < df.size();i++)
c@278 64 {
c@278 65 lp_df[i] = 0.;
c@278 66 }
c@277 67
c@278 68 inp1 = 0.; inp2 = 0.;
c@278 69 out1 = 0.; out2 = 0.;
c@277 70
c@277 71 // backwards filetering on time-reversed df
c@278 72 for (uint i = 0;i < df.size();i++)
c@278 73 {
c@278 74 lp_df[i] = b[0]*df[i] + b[1]*inp1 + b[2]*inp2 - a[1]*out1 - a[2]*out2;
c@278 75 inp2 = inp1;
c@278 76 inp1 = df[i];
c@278 77 out2 = out1;
c@278 78 out1 = lp_df[i];
c@278 79 }
c@277 80
c@277 81 // write the re-reversed (i.e. forward) version back to df
c@278 82 for (uint i = 0;i < df.size();i++)
c@278 83 {
c@278 84 df[i] = lp_df[df.size()-i-1];
c@278 85 }
c@277 86 }
c@277 87
c@277 88
c@277 89 void
c@278 90 TempoTrackV2::calculateBeatPeriod(const d_vec_t &df, d_vec_t &beat_period,
c@278 91 d_vec_t &tempi)
c@277 92 {
c@278 93 // to follow matlab.. split into 512 sample frames with a 128 hop size
c@278 94 // calculate the acf,
c@278 95 // then the rcf.. and then stick the rcfs as columns of a matrix
c@278 96 // then call viterbi decoding with weight vector and transition matrix
c@278 97 // and get best path
c@277 98
c@278 99 uint wv_len = 128;
c@278 100 double rayparam = 43.;
c@277 101
c@278 102 // make rayleigh weighting curve
c@278 103 d_vec_t wv(wv_len);
c@278 104 for (uint i=0; i<wv.size(); i++)
c@277 105 {
c@278 106 wv[i] = (static_cast<double> (i) / pow(rayparam,2.)) * exp((-1.*pow(-static_cast<double> (i),2.)) / (2.*pow(rayparam,2.)));
c@277 107 }
c@277 108
c@278 109 // beat tracking frame size (roughly 6 seconds) and hop (1.5 seconds)
c@278 110 uint winlen = 512;
c@278 111 uint step = 128;
c@278 112
c@278 113 // matrix to store output of comb filter bank, increment column of matrix at each frame
c@278 114 d_mat_t rcfmat;
c@278 115 int col_counter = -1;
c@278 116
c@278 117 // main loop for beat period calculation
c@281 118 for (uint i=0; i+winlen<df.size(); i+=step)
c@278 119 {
c@278 120 // get dfframe
c@278 121 d_vec_t dfframe(winlen);
c@278 122 for (uint k=0; k<winlen; k++)
c@278 123 {
c@278 124 dfframe[k] = df[i+k];
c@278 125 }
c@278 126 // get rcf vector for current frame
c@278 127 d_vec_t rcf(wv_len);
c@278 128 get_rcf(dfframe,wv,rcf);
c@277 129
c@278 130 rcfmat.push_back( d_vec_t() ); // adds a new column
c@278 131 col_counter++;
c@278 132 for (uint j=0; j<rcf.size(); j++)
c@278 133 {
c@278 134 rcfmat[col_counter].push_back( rcf[j] );
c@278 135 }
c@278 136 }
c@278 137
c@278 138 // now call viterbi decoding function
c@278 139 viterbi_decode(rcfmat,wv,beat_period,tempi);
c@277 140 }
c@277 141
c@277 142
c@277 143 void
c@277 144 TempoTrackV2::get_rcf(const d_vec_t &dfframe_in, const d_vec_t &wv, d_vec_t &rcf)
c@277 145 {
c@278 146 // calculate autocorrelation function
c@278 147 // then rcf
c@278 148 // just hard code for now... don't really need separate functions to do this
c@277 149
c@278 150 // make acf
c@277 151
c@278 152 d_vec_t dfframe(dfframe_in);
c@277 153
c@279 154 MathUtilities::adaptiveThreshold(dfframe);
c@277 155
c@278 156 d_vec_t acf(dfframe.size());
c@277 157
c@278 158
c@278 159 for (uint lag=0; lag<dfframe.size(); lag++)
c@278 160 {
c@278 161 double sum = 0.;
c@278 162 double tmp = 0.;
c@277 163
c@278 164 for (uint n=0; n<(dfframe.size()-lag); n++)
c@278 165 {
c@278 166 tmp = dfframe[n] * dfframe[n+lag];
c@278 167 sum += tmp;
c@278 168 }
c@278 169 acf[lag] = static_cast<double> (sum/ (dfframe.size()-lag));
c@278 170 }
c@277 171
c@278 172 // now apply comb filtering
c@278 173 int numelem = 4;
c@278 174
c@278 175 for (uint i = 2;i < rcf.size();i++) // max beat period
c@278 176 {
c@278 177 for (int a = 1;a <= numelem;a++) // number of comb elements
c@278 178 {
c@278 179 for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements
c@278 180 {
c@278 181 rcf[i-1] += ( acf[(a*i+b)-1]*wv[i-1] ) / (2.*a-1.); // calculate value for comb filter row
c@278 182 }
c@278 183 }
c@278 184 }
c@278 185
c@278 186 // apply adaptive threshold to rcf
c@279 187 MathUtilities::adaptiveThreshold(rcf);
c@278 188
c@278 189 double rcfsum =0.;
c@278 190 for (uint i=0; i<rcf.size(); i++)
c@278 191 {
c@278 192 rcf[i] += EPS ;
c@278 193 rcfsum += rcf[i];
c@278 194 }
c@277 195
c@278 196 // normalise rcf to sum to unity
c@278 197 for (uint i=0; i<rcf.size(); i++)
c@277 198 {
c@278 199 rcf[i] /= (rcfsum + EPS);
c@277 200 }
c@277 201 }
c@277 202
c@277 203 void
c@278 204 TempoTrackV2::viterbi_decode(const d_mat_t &rcfmat, const d_vec_t &wv, d_vec_t &beat_period, d_vec_t &tempi)
c@277 205 {
c@278 206 // following Kevin Murphy's Viterbi decoding to get best path of
c@278 207 // beat periods through rfcmat
c@277 208
c@278 209 // make transition matrix
c@278 210 d_mat_t tmat;
c@278 211 for (uint i=0;i<wv.size();i++)
c@278 212 {
c@278 213 tmat.push_back ( d_vec_t() ); // adds a new column
c@278 214 for (uint j=0; j<wv.size(); j++)
c@278 215 {
c@278 216 tmat[i].push_back(0.); // fill with zeros initially
c@278 217 }
c@278 218 }
c@278 219
c@278 220 // variance of Gaussians in transition matrix
c@278 221 // formed of Gaussians on diagonal - implies slow tempo change
c@278 222 double sigma = 8.;
c@278 223 // don't want really short beat periods, or really long ones
c@278 224 for (uint i=20;i <wv.size()-20; i++)
c@278 225 {
c@278 226 for (uint j=20; j<wv.size()-20; j++)
c@278 227 {
c@278 228 double mu = static_cast<double>(i);
c@278 229 tmat[i][j] = exp( (-1.*pow((j-mu),2.)) / (2.*pow(sigma,2.)) );
c@278 230 }
c@278 231 }
c@277 232
c@278 233 // parameters for Viterbi decoding... this part is taken from
c@278 234 // Murphy's matlab
c@277 235
c@278 236 d_mat_t delta;
c@278 237 i_mat_t psi;
c@278 238 for (uint i=0;i <rcfmat.size(); i++)
c@278 239 {
c@278 240 delta.push_back( d_vec_t());
c@278 241 psi.push_back( i_vec_t());
c@278 242 for (uint j=0; j<rcfmat[i].size(); j++)
c@278 243 {
c@278 244 delta[i].push_back(0.); // fill with zeros initially
c@278 245 psi[i].push_back(0); // fill with zeros initially
c@278 246 }
c@278 247 }
c@277 248
c@277 249
c@278 250 uint T = delta.size();
c@281 251
c@281 252 if (T < 2) return; // can't do anything at all meaningful
c@281 253
c@278 254 uint Q = delta[0].size();
c@277 255
c@278 256 // initialize first column of delta
c@277 257 for (uint j=0; j<Q; j++)
c@277 258 {
c@278 259 delta[0][j] = wv[j] * rcfmat[0][j];
c@278 260 psi[0][j] = 0;
c@277 261 }
c@278 262
c@277 263 double deltasum = 0.;
c@277 264 for (uint i=0; i<Q; i++)
c@277 265 {
c@278 266 deltasum += delta[0][i];
c@277 267 }
c@277 268 for (uint i=0; i<Q; i++)
c@277 269 {
c@278 270 delta[0][i] /= (deltasum + EPS);
c@277 271 }
c@277 272
c@277 273
c@278 274 for (uint t=1; t<T; t++)
c@278 275 {
c@278 276 d_vec_t tmp_vec(Q);
c@277 277
c@278 278 for (uint j=0; j<Q; j++)
c@278 279 {
c@278 280 for (uint i=0; i<Q; i++)
c@278 281 {
c@278 282 tmp_vec[i] = delta[t-1][i] * tmat[j][i];
c@278 283 }
c@278 284
c@278 285 delta[t][j] = get_max_val(tmp_vec);
c@277 286
c@278 287 psi[t][j] = get_max_ind(tmp_vec);
c@278 288
c@278 289 delta[t][j] *= rcfmat[t][j];
c@278 290 }
c@277 291
c@278 292 // normalise current delta column
c@278 293 double deltasum = 0.;
c@278 294 for (uint i=0; i<Q; i++)
c@278 295 {
c@278 296 deltasum += delta[t][i];
c@278 297 }
c@278 298 for (uint i=0; i<Q; i++)
c@278 299 {
c@278 300 delta[t][i] /= (deltasum + EPS);
c@278 301 }
c@278 302 }
c@277 303
c@278 304 i_vec_t bestpath(T);
c@278 305 d_vec_t tmp_vec(Q);
c@278 306 for (uint i=0; i<Q; i++)
c@278 307 {
c@278 308 tmp_vec[i] = delta[T-1][i];
c@278 309 }
c@277 310
c@278 311 // find starting point - best beat period for "last" frame
c@278 312 bestpath[T-1] = get_max_ind(tmp_vec);
c@278 313
c@278 314 // backtrace through index of maximum values in psi
c@278 315 for (uint t=T-2; t>0 ;t--)
c@278 316 {
c@278 317 bestpath[t] = psi[t+1][bestpath[t+1]];
c@278 318 }
c@277 319
c@278 320 // weird but necessary hack -- couldn't get above loop to terminate at t >= 0
c@278 321 bestpath[0] = psi[1][bestpath[1]];
c@277 322
c@278 323 uint lastind = 0;
c@278 324 for (uint i=0; i<T; i++)
c@278 325 {
c@278 326 uint step = 128;
c@278 327 for (uint j=0; j<step; j++)
c@278 328 {
c@278 329 lastind = i*step+j;
c@278 330 beat_period[lastind] = bestpath[i];
c@278 331 }
c@282 332 // std::cerr << "bestpath[" << i << "] = " << bestpath[i] << " (used for beat_periods " << i*step << " to " << i*step+step-1 << ")" << std::endl;
c@278 333 }
c@277 334
c@278 335 //fill in the last values...
c@278 336 for (uint i=lastind; i<beat_period.size(); i++)
c@278 337 {
c@278 338 beat_period[i] = beat_period[lastind];
c@278 339 }
c@277 340
c@278 341 for (uint i = 0; i < beat_period.size(); i++)
c@277 342 {
c@279 343 tempi.push_back((60. * m_rate / m_increment)/beat_period[i]);
c@277 344 }
c@277 345 }
c@277 346
c@277 347 double
c@277 348 TempoTrackV2::get_max_val(const d_vec_t &df)
c@277 349 {
c@278 350 double maxval = 0.;
c@278 351 for (uint i=0; i<df.size(); i++)
c@277 352 {
c@278 353 if (maxval < df[i])
c@278 354 {
c@278 355 maxval = df[i];
c@278 356 }
c@277 357 }
c@277 358
c@278 359 return maxval;
c@277 360 }
c@277 361
c@277 362 int
c@277 363 TempoTrackV2::get_max_ind(const d_vec_t &df)
c@277 364 {
c@278 365 double maxval = 0.;
c@278 366 int ind = 0;
c@278 367 for (uint i=0; i<df.size(); i++)
c@277 368 {
c@278 369 if (maxval < df[i])
c@278 370 {
c@278 371 maxval = df[i];
c@278 372 ind = i;
c@278 373 }
c@277 374 }
c@278 375
c@278 376 return ind;
c@277 377 }
c@277 378
c@277 379 void
c@277 380 TempoTrackV2::normalise_vec(d_vec_t &df)
c@277 381 {
c@278 382 double sum = 0.;
c@278 383 for (uint i=0; i<df.size(); i++)
c@278 384 {
c@278 385 sum += df[i];
c@278 386 }
c@278 387
c@278 388 for (uint i=0; i<df.size(); i++)
c@278 389 {
c@278 390 df[i]/= (sum + EPS);
c@278 391 }
c@277 392 }
c@277 393
c@277 394 void
c@277 395 TempoTrackV2::calculateBeats(const d_vec_t &df, const d_vec_t &beat_period,
c@277 396 d_vec_t &beats)
c@277 397 {
c@281 398 if (df.empty() || beat_period.empty()) return;
c@281 399
c@278 400 d_vec_t cumscore(df.size()); // store cumulative score
c@278 401 i_vec_t backlink(df.size()); // backlink (stores best beat locations at each time instant)
c@278 402 d_vec_t localscore(df.size()); // localscore, for now this is the same as the detection function
c@277 403
c@278 404 for (uint i=0; i<df.size(); i++)
c@277 405 {
c@278 406 localscore[i] = df[i];
c@278 407 backlink[i] = -1;
c@277 408 }
c@277 409
c@278 410 double tightness = 4.;
c@278 411 double alpha = 0.9;
c@277 412
c@278 413 // main loop
c@278 414 for (uint i=0; i<localscore.size(); i++)
c@278 415 {
c@278 416 int prange_min = -2*beat_period[i];
c@278 417 int prange_max = round(-0.5*beat_period[i]);
c@277 418
c@278 419 // transition range
c@278 420 d_vec_t txwt (prange_max - prange_min + 1);
c@278 421 d_vec_t scorecands (txwt.size());
c@277 422
c@278 423 for (uint j=0;j<txwt.size();j++)
c@278 424 {
c@278 425 double mu = static_cast<double> (beat_period[i]);
c@278 426 txwt[j] = exp( -0.5*pow(tightness * log((round(2*mu)-j)/mu),2));
c@277 427
c@278 428 // IF IN THE ALLOWED RANGE, THEN LOOK AT CUMSCORE[I+PRANGE_MIN+J
c@278 429 // ELSE LEAVE AT DEFAULT VALUE FROM INITIALISATION: D_VEC_T SCORECANDS (TXWT.SIZE());
c@277 430
c@278 431 int cscore_ind = i+prange_min+j;
c@278 432 if (cscore_ind >= 0)
c@278 433 {
c@278 434 scorecands[j] = txwt[j] * cumscore[cscore_ind];
c@278 435 }
c@278 436 }
c@277 437
c@278 438 // find max value and index of maximum value
c@278 439 double vv = get_max_val(scorecands);
c@278 440 int xx = get_max_ind(scorecands);
c@277 441
c@278 442 cumscore[i] = alpha*vv + (1.-alpha)*localscore[i];
c@278 443 backlink[i] = i+prange_min+xx;
c@280 444
c@282 445 // std::cerr << "backlink[" << i << "] <= " << backlink[i] << std::endl;
c@278 446 }
c@278 447
c@278 448 // STARTING POINT, I.E. LAST BEAT.. PICK A STRONG POINT IN cumscore VECTOR
c@278 449 d_vec_t tmp_vec;
c@278 450 for (uint i=cumscore.size() - beat_period[beat_period.size()-1] ; i<cumscore.size(); i++)
c@278 451 {
c@278 452 tmp_vec.push_back(cumscore[i]);
c@278 453 }
c@278 454
c@278 455 int startpoint = get_max_ind(tmp_vec) + cumscore.size() - beat_period[beat_period.size()-1] ;
c@278 456
c@281 457 // can happen if no results obtained earlier (e.g. input too short)
c@281 458 if (startpoint >= backlink.size()) startpoint = backlink.size()-1;
c@281 459
c@278 460 // USE BACKLINK TO GET EACH NEW BEAT (TOWARDS THE BEGINNING OF THE FILE)
c@278 461 // BACKTRACKING FROM THE END TO THE BEGINNING.. MAKING SURE NOT TO GO BEFORE SAMPLE 0
c@278 462 i_vec_t ibeats;
c@278 463 ibeats.push_back(startpoint);
c@282 464 // std::cerr << "startpoint = " << startpoint << std::endl;
c@278 465 while (backlink[ibeats.back()] > 0)
c@278 466 {
c@282 467 // std::cerr << "backlink[" << ibeats.back() << "] = " << backlink[ibeats.back()] << std::endl;
c@281 468 int b = ibeats.back();
c@281 469 if (backlink[b] == b) break; // shouldn't happen... haha
c@281 470 ibeats.push_back(backlink[b]);
c@278 471 }
c@277 472
c@278 473 // REVERSE SEQUENCE OF IBEATS AND STORE AS BEATS
c@278 474 for (uint i=0; i<ibeats.size(); i++)
c@278 475 {
c@278 476 beats.push_back( static_cast<double>(ibeats[ibeats.size()-i-1]) );
c@278 477 }
c@277 478 }
c@277 479
c@277 480